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Abstract. We propose a new approach to solving dynamic decision problems with
unbounded rewards based on the transformations used in Q-learning. In our case,
the objective of the transform is to convert an unbounded dynamic program into a
bounded one. The approach is general enough to handle problems for which existing
methods struggle, and yet simple relative to other techniques and accessible for
applied work. We show by example that many common decision problems satisfy
our conditions.
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1. Introduction

Dynamic programming forms the backbone of modern economics. Every year, thou-
sands of students in graduate programs around the world learn the standard method-
ology for infinite horizon problems with discounting. Constructed primarily by Black-
well (1962, 1965), this theory uses contraction mappings over spaces of bounded func-
tions metrized by the supremum norm. The approach is elegant, powerful in terms
of deriving theoretical results and, when applicable, generates globally convergent
algorithms. Standard textbook treatments can be found in Stokey et al. (1989) and
Bertsekas (2017).
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Unfortunately, the approach is not actually applicable in the vast majority of concrete
economic problems. This is due to the fact that almost all reward functions used in
applications are unbounded. For example, in quantitative work, the most commonly
used flow utility function is the constant relative risk aversion (CRRA) specification

u(x) =

{
x1−γ

1−γ
if γ > 0 and γ 6= 1,

log x if γ = 1,
(1)

where γ > 0 is the risk aversion coefficient. The function u is unbounded above if
0 < γ < 1, is unbounded below if γ > 1, and is unbounded both from above and
below if γ = 1. Unbounded reward functions violate Blackwell’s conditions.

The need to deal with unbounded reward functions has led researchers to build various
extensions of Blackwell’s theory. These extensions typically involve either (a) recover-
ing contractivity by modifying the metric that measures distance between candidate
value functions, or (b) introducing a weaker form of contractivity that preserves at
least some of Blackwell’s optimality results. The former approach is exemplified by the
weighted supremum norm method, introduced by Wessels (1977) and applied to eco-
nomic problems by Boyd (1990), Alvarez and Stokey (1998), Bäuerle and Jaśkiewicz
(2018) and several other authors.2 The second approach can be seen in the work of
Rincón-Zapatero and Rodríguez-Palmero (2003) and Martins-da-Rocha and Vailakis
(2010) for the deterministic case and Matkowski and Nowak (2011) for the stochastic
case, who apply local contractions on successively larger subsets of the state space.

While these techniques are ingenious, and certainly important from a theoretical
perspective, their direct impact on quantitative applications in economics has, as
yet, been limited. Weighted supremum norms work well with certain problems but
struggle with others, such as when rewards are unbounded below.3 Local contraction
methods are broadly applicable under reasonable assumptions but require verifying
technical conditions involving increasing sequences of compact sets that exhaust the

2Modern summaries of the method can be found in Hernández-Lerma and Lasserre (1999), Bäuerle
and Rieder (2011) and Bertsekas (2018).

3To be specific, the weighted supremum norm approach can be applied broadly when the reward
function is unbounded above and bounded below. However, when the reward function is unbounded
below, it is generally hard to construct a proper weighting function and thus a contraction mapping
via the weighted supremum norm. Therefore, it is challenging to characterize the value function as
the unique fixed point of the Bellman operator. For more background, see, e.g., Le Van and Vailakis
(2005) and Jaśkiewicz and Nowak (2011).
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state space.4 Proofs of convergence properties are significantly more complex than the
bounded case, and the statements of the theorems are more challenging to interpret.

In this paper we take an alternative route. Rather than transforming the standard
contraction mapping theory of Blackwell to handle unbounded dynamic programs,
we transform the unbounded dynamic programs into bounded ones so that stan-
dard contraction mapping theory can be applied. The transformation that we use
maps value functions into the “action-value” functions used in Q-learning, a popular
reinforcement learning algorithm that allows online updating by a controller in an
incremental fashion (see, e.g., Watkins and Dayan (1992) or Szepesvári (2010)). It
has been shown that the algorithm has strong global convergence properties and our
results are in this spirit.

The core idea is as follows: In standard dynamic programs, the Bellman operator is
defined by composing the following two operations: given a candidate value function
v, (a) compute the discounted expectation g := βEv over current states and actions,
and (b) add current reward r, maximize over current feasible actions, and then update
the candidate value function as v = max {r + g}. Instead of aiming at updating v,
one can transform the Bellman operator by applying operations (b) → (a), which
is the Q-transform, and focus on updating the candidate “action-value” function g.
We show that, under relatively weak and easily testable conditions, the transformed
Bellman operator is a contraction with unique fixed point g∗ that is bounded, and
the true value function v∗ can be recovered as v∗ = max {r + g∗}.

One advantage of the transformation-based approach to unbounded programs adopted
in this paper is that the methodology fits well with the case where the weighted supre-
mum norm approach struggles: maximization problems where rewards are unbounded
below (see Footnote 3). Such optimization problems are commonplace in quantita-
tive applications, such as those involving CRRA flow utility with γ > 1, which is the
empirically relevant case. We show that, for many canonical applications from this
class of problems, the Q-transform converts unbounded value functions into bounded
action-value functions. Standard contraction mapping theory can then be applied.

A second advantage of the Q-transform method is that it has no difficulty handling
stochastic dynamic programs. In fact, the action-value functions associated with the

4It is required that the decision problem satisfies contractivity on each of these compact sets, and
some control over the way that contractivity fades must also be imposed (see, e.g., Matkowski and
Nowak (2011), Assumptions A1–A5, C1-C2 and D1-D2).
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Q-transform tend to be well-behaved and regular in the stochastic case, due to the fact
that conditional expectations operators have a smoothing effect on functions. There-
fore, it requires less restriction on the primitive setup compared with many existing
methods. In contrast, many existing papers on unbounded dynamic programming
either focus on the deterministic case or restrict the support of shocks.5

A third advantage is that, despite its generality, the Q-transform approach is accessi-
ble to a general audience. In particular, it relies mainly on the standard contraction
mapping theorem, and can be conveniently generalized to handle dynamic programs
where rewards are both unbounded above and unbounded below. We provide many
canonical examples such as optimal savings, optimal default, job search, and optimal
portfolio, all with unbounded rewards and in stochastic environments.

On a technical level, the contribution of our paper is twofold. First, we identify general
sufficient conditions under which unbounded dynamic programs can be transformed
into bounded ones. Second, we prove that, when such a transformation is available,
the solution to the transformed problem is equal to that to the original problem. To
the best of our knowledge, this is the first research in which the Q-transform has been
used to convert unbounded reward dynamic programs into bounded ones.6

There are connections between our work and the study of unbounded dynamic pro-
gramming in Kamihigashi (2014). Assuming the Bellman operator maps an order
interval of functions into itself and some transversality-like conditions hold, Kamihi-
gashi (2014) shows the existence and uniqueness of the fixed point of the Bellman
equation and obtains optimality properties. The relative advantages of the approach
presented here include treating stochastic decision problems (Kamihigashi (2014) re-
stricts attention to the deterministic case) and obtaining uniform geometric rates of
convergence in value function iteration, rather than pointwise convergence.

Our work is also related to results in Van Der Wal (1980) and Jaśkiewicz and Nowak
(2011), which explicitly admit problems with rewards that are unbounded below. In

5Alvarez and Stokey (1998) handle certain homogeneous problems using weighted supremum
norm methods, although they focus on the deterministic case. A generalization to the stochastic
case requires bounds on the maximum growth rate. Assumptions D1-D2 of Matkowski and Nowak
(2011) also require the state not to jump too much. These assumptions are strong from an applied
perspective.

6Researchers in economics have used alternative transformations of the Bellman equation when
studying dynamic programming problems, including Rust (1987), Jovanovic (1982), Abbring et al.
(2018) and Ma and Stachurski (2021). These transformations are typically aimed at improving
economic intuition, estimation properties or computational efficiency.
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this setting, Jaśkiewicz and Nowak (2011) show that the value function of a Markov
decision process is a solution to the Bellman equation. The methodology developed
here strengthens their results by adding uniqueness and proving that value function
iteration leads to an optimal policy. In an extension section, we combine our method-
ology with the weighted supremum norm approach, allowing us to handle problems
that are both unbounded above and unbounded below.

Some studies have approached dynamic programming with unbounded rewards via
an Euler equation method, as seen for example in Kuhn (2013) and Ma et al. (2020).
This methodology can be powerful but is limited in scope. For example, in Section 4,
we show how the Q-transform method can be applied to the kinds of optimal savings
problem with endogenous labor choice that are common in both theoretic and applied
works (see, e.g., Castañeda et al. (2003) and Zhu (2020)). The Euler equation method
of Kuhn (2013) and Ma et al. (2020) is not applicable in this setting because the
choice variable (consumption and labor) is multi-dimensional. Similarly, the Euler
equation method is not applicable in the optimal savings problem in Section 4.5, due
to nontrivial portfolio choice. Optimal consumption-portfolio problems have been
mostly studied in the literature under special homogeneity assumptions (Samuelson,
1969; Toda, 2014) or finite horizon (He and Pearson, 1991). Our framework shows
that the problem can be studied in an infinite-horizon environment when the utility
function is unbounded below.

The Q-transform is not limited to dynamic programs that are additively separable. In
a recent paper, Bäuerle and Jaśkiewicz (2018) study an optimal growth model in the
presence of risk-sensitive preference, in which the agent is risk averse in future utility
(in addition to being risk averse in future consumption).7 They provide valuable
optimality results, although these results cannot treat many common period utility
functions, such as CRRA with relative risk aversion at least one or logarithm utility,
because they exclude all utility functions that are unbounded below. Furthermore, an
optimal growth model is a rather special dynamic program. In an extension section,
we present a general theory of dynamic programming with risk-sensitive preferences
via the Q-transform.

7This is in comparison with the classical additively separable preference model, where the agent is
risk neutral in future utility. The additively separable preference is a special limiting case by letting
γ → 0 and using the property limγ→0 − 1

γ logEe−γX = EX for a random variable X. Further
comments on risk-sensitive preference can be found in Föllmer and Schied (2004), Bäuerle and
Rieder (2011), Bäuerle and Jaśkiewicz (2018) and references cited therein. Models with risk-sensitive
preference are also related to robust control problems, as discussed in Hansen and Sargent (2008).
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The rest of our paper is structured as follows. Section 2 starts the exposition with
typical examples. Section 3 presents the general theory when rewards are bounded
above (though potentially unbounded below). Section 4 provides additional applica-
tions. Section 5 extends the general theory to the case when rewards are unbounded
both from above and below, and also considers the case with recursive (risk-sensitive)
preferences. Section 6 concludes. Main proofs are deferred to the appendix.

2. Example Applications

We first illustrate the methodology for converting unbounded problems to bounded
ones in some relatively simple settings. More sophisticated applications are deferred
to Section 4 after presentation of the theory.

2.1. Application 1: Optimal Savings. Consider an optimal savings problem where
a borrowing constrained agent solves

maximize E

∞∑
t=0

βtu(ct) (2a)

subject to 0 6 ct 6 wt, (2b)
wt+1 = R(wt − ct) + yt+1, (2c)

with (w0, y0) given. Here β ∈ (0, 1) is the discount factor, ct, wt, yt > 0 are, respec-
tively, consumption, wealth and non-financial income at time t, R > 0 is the gross
rate of return on financial income, and u : R+ → R ∪ {−∞} is a utility function,
which is increasing and continuous.8 For now, suppose that u is bounded above but
unbounded below, with u(0) = −∞. This is the case for, say, the constant relative
risk aversion (CRRA) specification (1) with γ > 1 (as in much of the literature).

Assume that {yt} satisfies yt = y(zt, ξt), where zt is a Markov process with state
space Z, ξt is an iid shock of arbitrary dimension, and y is a nonnegative measurable
function. The Bellman equation of this problem is

v(w, z) = sup
06c6w

{u(c) + βEzv(R(w − c) + y′, z′)} , (3)

8The optimal savings problem represents one of the fundamental workhorses of modern macroeco-
nomics. By convention, the financial wealth wt in the budget constraint in (2c) includes the current
non-financial income yt. One can modify the budget constraint to an alternative timing such as
wt+1 = R(wt − ct + yt), where the time t financial wealth wt excludes current income yt, and the
arguments below still go through after suitable modifications. An application along these lines is
given in Section 4.4.
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where y′ = y(z′, ξ′). The value function is unbounded below, and the classical argu-
ments in Blackwell (1965) cannot be applied.9

Consider, however, the following line of argument. Suppose that

inf
z
Ezu(y(z

′, ξ′)) > −∞, (4)

which is a relatively mild restriction.10 Let

g(w, z, c) := βEzv(R(w − c) + y′, z′). (5)

The function g is called the action-value function, since it returns the value of the state
after committing to a given action in the current period (and using continuation values
dictated by v thereafter). Following the spirit of Q-learning, we begin by rewriting
the Bellman equation in terms of the action-value function alone.11

In particular, we combine (3) and (5) to give

v(w, z) = sup
06c6w

{u(c) + g(w, z, c)} . (6)

We eliminate the function v from (6) by using the definition of g in (5). The first
step is to evaluate v in (6) at (R(w − c) + y′, z′), which gives

v(R(w − c) + y′, z′) = sup
06c′6R(w−c)+y′

{u(c′) + g(R(w − c) + y′, z′, c′)} .

Taking the conditional expectation of both sides with respect to z, multiplying by β

and using (5) again, we get

g(w, z, c) = βEz sup
06c′6R(w−c)+y′

{u(c′) + g(R(w − c) + y′, z′, c′)} , (7)

which is a functional equation in g. Consider a transformed Bellman operator S such
that Sg(w, z, c) is equal to the right hand side of (7). By construction, any solution g

9To confirm this, suppose to the contrary that v is the value function and |v| 6 M < ∞. Then
−M 6 v(0, z) 6 u(0) + βM = −∞. Contradiction.

10The expectation in (4) should be understood as E[u(y(zt+1, ξt+1)) | zt = z]. Condition (4)
holds if, say, y(z, ξ) = z for all ξ and Z is finite and positive (Aiyagari, 1994; Cao, 2020), or if income
has a persistent-transitory representation (Heathcote et al., 2010; Ejrnæs and Browning, 2014) such
as log y(z, ξ) = µ(z) + σ(z)ξ, with suitable distributional assumptions (e.g., u is CRRA, z is a finite
state Markov chain, and ξ has a finite moment generating function).

11Our approach is slightly different from the Q-learning approach, where the action-value function
is defined as u+g instead. We will show that eliminating the current reward (which can be unbounded
below) can help us transform the action-value function into a bounded function and, as a result, the
classical dynamic programming theory applies. This is the essence of our approach.
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of (7) is a fixed point of S and vice versa. Let G be the space of bounded measurable
functions on the set D defined by

D := {(w, z, c) ∈ R+ × Z×R+ : c 6 w}

equipped with the supremum norm ‖·‖. The set G can be understood as the family of
candidate action-value functions for this problem. We claim that S maps G into itself
and, moreover, is a contraction of modulus β with respect to the supremum norm.

To see that this is so, pick any g ∈ G. Then Sg is bounded above, since

Sg(w, z, c) 6 β(supu+ ‖g‖) < ∞.

More importantly, Sg is bounded below. Indeed, using g(w′, z′, c′) > −‖g‖ and the
monotonicity of u, we obtain

Sg(w, z, c) > βEz sup
06c′6R(w−c)+y′

{u(c′)− ‖g‖}

= βEz {u(R(w − c) + y′)− ‖g‖}

> βEzu(y
′)− β ‖g‖ .

The last term is finite by (4). Hence S is a self map on G. To show that S is a
contraction mapping, we verify Blackwell (1965)’s sufficient conditions. From (7) we
see that g1 6 g2 implies Sg1 6 Sg2, so monotonicity holds. If M > 0 is any constant,
then for any g ∈ G we have

S(g +M)(w, z, c) = βEz sup
06c′6R(w−c)+y′

{u(c′) + g(R(w − c) + y′, z′, c′) +M}

= βEz sup
06c′6R(w−c)+y′

{u(c′) + g(R(w − c) + y′, z′, c′)}+ βM

= Sg(w, z, c) + βM,

so the discounting property holds. We have now shown that S is a contractive self-
map on G. Moreover, G is a space of bounded functions. By Banach’s contraction
mapping theorem, S has a unique fixed point g∗ in G.

It is natural to guess that we can now insert g∗ into the right hand side of (6),
maximize at each state, and obtain the optimal consumption policy. We show that
this conjecture is correct and, more generally, that Bellman’s principle of optimality
vis-à-vis the transformed Bellman equation also holds. The arguments are not trivial,
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since the transformation in (5) that maps v to g is not bijective. Full details are
provided in Section 3.12

2.2. Application 2: Optimal Default. Consider an infinite horizon optimal sav-
ings problem with default, in the spirit of Arellano (2008) and a large related litera-
ture.13 A country with current assets wt chooses between continuing to participate in
international financial markets and defaulting. As in Section 2.1, output yt = y(zt, ξt)

is a function of a Markov process {zt} and an iid shock {ξt}. To simplify the expo-
sition, we assume that default leads to permanent exclusion from financial markets,
with lifetime value

vd(y, z) = E
∞∑
t=0

βtu(yt).

The utility function u has the same properties as Section 2.1. The value of continued
participation in financial markets is

vc(w, y, z) = sup
−b6w′6R(w+y)

{u(w + y − w′/R) + βEz v(w
′, y′, z′)} ,

where b > 0 is a constant borrowing constraint and v is the value function satisfying

v(w, y, z) = max
{
vd(y, z), vc(w, y, z)

}
.

The function v is unbounded below because u(0) = −∞. However, we can convert
this into a bounded problem, as the following analysis shows.

Let i be a discrete choice variable taking values in {0, 1}, with 0 indicating default
and 1 indicating continued participation. We introduce the action-value function

g(z, w′, i) :=

{
βEzv

d(y′, z′) if i = 0,
βEzv(w

′, y′, z′) if i = 1,

so that for −b 6 w′ 6 R(w + y), we have

v(w, y, z) = max

{
u(y) + g(z, w′, 0), sup

w′
{u(w + y − w′/R) + g(z, w′, 1)}

}
.

12For the savings problem treated above, one can also use Euler equation methods, which cir-
cumvent some of the issues associated with unbounded rewards (see, e.g., Kuhn (2013) and Ma
et al. (2020)). However, for many practical applications, these Euler equation arguments cannot be
used, due to features such as recursive preferences or discrete or multi-dimensional choices (see be-
low). Moreover, our detailed treatment of optimal savings in Section 4.1 shows that, even when Euler
equation methods are available, the assumptions needed for the theory in this paper are significantly
weaker, at least in some dimensions.

13See, e.g., Hatchondo et al. (2009), Hatchondo et al. (2016) and Aguiar et al. (2019).
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Eliminating the value function v yields

g(z, w′, 0) = βEz {u(y′) + g(z′, w′, 0)} and

g(z, w′, 1) = βEz max

{
u(y′) + g(z′, w′, 0), sup

w′′
{u(w′ + y′ − w′′/R) + g(z′, w′′, 1)}

}
,

where −b 6 w′′ 6 R(w′ + y′). We can then define the fixed point operator S corre-
sponding to these functional equations.

If g is bounded above by some constant K, then Sg 6 supc u(c) +K. More impor-
tantly, if g is bounded below by some constant M , we obtain

Sg(z, w′, 0) > βEzu(y
′) + βM,

Sg(z, w′, 1) > βEz max {u(y′) +M, u(w′ + y′ + b/R) +M}

= βEz max {u(y′), u(w′ + y′ + b/R)}+ βM.

Hence, Sg is bounded below by a finite constant if (4) holds. An argument similar
to the one in Section 2.1 now proves that S is a contraction with respect to the
supremum norm. (Section 4.2 gives details.)

2.3. Application 3: Job Search. Following McCall (1970), consider a search prob-
lem where an unemployed worker can either accept the current job offer and work at
that wage forever or choose an outside option (e.g., work in the informal sector) and
continue to the next period. Letting zt be the worker’s productivity at time t, which
is a Markov process, the job offer wt and outside option ct satisfy

wt = w(zt, ξt) and ct = c(zt, ξt), (8)

where w, c are nonnegative measurable functions and ξt is an iid shock that could
be vector-valued.14 Letting u be the utility function and β ∈ (0, 1) be the discount
factor, a worker that accepts a job offer w enjoys lifetime utility

∑∞
t=0 β

tu(w) = u(w)
1−β

.
Therefore, the worker’s value function satisfies the Bellman equation

v(w, c, z) = max

{
u(w)

1− β
, u(c) + βEzv(w

′, c′, z′)

}
. (9)

For now, let u be bounded above. In addition, analogous to (4), assume

either inf
z
Ezu(w

′) > −∞ or inf
z
Ezu(c

′) > −∞. (10)

14For instance, if the job offer wt and outside option ct are independent conditional on zt, then
we may write ξ = (ξ1, ξ2), where ξ1 and ξ2 are independent, w(z, ξ) depends only on z and ξ1, and
c(z, ξ) depends only on z and ξ2.



11

The value function v(w, c, z) is unbounded below, if, say u is CRRA as in (1) with
γ > 1 and the job offer and outside option in (8) can be arbitrarily small. To shift
to a bounded problem, we can proceed in a similar vein to our manipulation of the
Bellman equation in the optimal savings case. First we set

g(z) := βEz v(w
′, c′, z′),

so that (9) can be written as

v(w, c, z) = max

{
u(w)

1− β
, u(c) + g(z)

}
.

Next we use the definition of g to eliminate v from this last expression, which leads
to the functional equation

g(z) = βEz max

{
u(w′)

1− β
, u(c′) + g(z′)

}
. (11)

Let S be an operator such that Sg(z) is equal to the right hand side of (11). It is
clear that if g is bounded above then so is Sg. In addition, if g is bounded below then
so is Sg. To show this, using the elementary bound

Emax {X,Y } > max {EX,EY } (12)

for arbitrary random variables X,Y and g > −‖g‖, we have

Sg(z) > βmax

{
Ez

u(w′)

1− β
,Ezu(c

′)− ‖g‖
}
.

Condition (10) then implies that Sg is also bounded below.

An argument similar to the one adopted in Sections 2.1–2.2 shows that S is a contrac-
tion mapping with respect to the supremum norm on a space of bounded functions.
Thus, we can proceed down the same path to establish optimality.

3. General Formulation and Theory

Section 2 showed how some unbounded problems can be converted to bounded prob-
lems by transforming the Bellman equation. The next step is to confirm the validity
of such a transformation in terms of the connection between the transformed Bellman
equation and optimal policies. We do this in a generic dynamic programming setting
that contains the applications given above.
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3.1. Problem Formulation. For a given topological space E, let B(E) be the Borel
subsets of E. For our purpose, a dynamic program consists of

• a nonempty set X called the state space,
• a nonempty set A called the action space,
• a nonempty correspondence Γ : X � A called the feasible correspondence,

along with the associated set of state action pairs

D := {(x, a) ∈ X× A : a ∈ Γ(x)} ,

• a measurable map r : D → R ∪ {−∞} called the reward function,
• a constant β ∈ (0, 1) called the discount factor, and
• a stochastic kernel P governing the evolution of states.15

Each period, an agent observes a state xt ∈ X and responds with an action at ∈
Γ(xt) ⊂ A. The agent then obtains a reward r(xt, at), moves to the next period with
a new state xt+1, and repeats the process by choosing at+1 and so on. The state
process updates according to xt+1 ∼ P (xt, at, ·).

Let Σ denote the set of feasible policies, which we assume to be nonempty and define
as all measurable maps σ : X → A satisfying σ(x) ∈ Γ(x) for all x ∈ X.16 Given any
policy σ ∈ Σ and initial state x0 = x ∈ X, the σ-value function vσ is defined by

vσ(x) =
∞∑
t=0

βt
Exr(xt, σ(xt)) (13)

whenever the expectation and infinite sum are well-defined. We understand vσ(x) as
the lifetime value of following policy σ now and forever, starting from current state
x.

The value function associated with this dynamic program is defined at each x ∈ X by

v∗(x) = sup
σ∈Σ

vσ(x). (14)

A feasible policy σ∗ is called optimal if vσ∗ = v∗ on X. The objective of the agent is
to find an optimal policy that attains the maximum lifetime value.

15Here a stochastic kernel corresponding to our controlled Markov process {(xt, at)} is a mapping
P : D× B(X) → [0, 1] such that (1) for each (x, a) ∈ D, A 7→ P (x, a,A) is a probability measure on
B(X), and (2) for each A ∈ B(X), (x, a) 7→ P (x, a,A) is a measurable function.

16We can and do focus on stationary Markov policies in what follows since the value of any
nonstationary policy can be obtained by a stationary Markov policy. See, e.g., Bertsekas (2018,
Section 2.1).
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The Bellman equation associated with the dynamic program is

v(x) = sup
a∈Γ(x)

{r(x, a) + βEx,av(x
′)} , (15)

where Ex,a denotes the expectation with respect to the probability measure P (x, a, ·).

3.2. The Q-Transform. As in the examples in Section 2, we define the action-value
function g as g(x, a) := βEx,av(x

′). Similar to the Q-learning approach, we rewrite
the Bellman equation in terms of the action-value function, which gives

v(x) = sup
a∈Γ(x)

{r(x, a) + g(x, a)} .

Changing (x, a) to (x′, a′), multiplying both sides by β, taking the conditional expec-
tation with respect to (x, a), and using the definition of g, we obtain the transformed
Bellman equation

g(x, a) = βEx,a sup
a′∈Γ(x′)

{r(x′, a′) + g(x′, a′)} . (16)

Motivated by this derivation, given a real-valued measurable function g on D, we
define the transformed Bellman operator S by

Sg(x, a) := βEx,a sup
a′∈Γ(x′)

{r(x′, a′) + g(x′, a′)} . (17)

A feasible policy σ is called g-greedy if

σ(x) ∈ argmax
a∈Γ(x)

{r(x, a) + g(x, a)} for all x ∈ X. (18)

At each x ∈ X and (x, a) ∈ D, we define

r̄(x) := sup
a∈Γ(x)

r(x, a) and r̂(x, a) := Ex,ar̄(x
′). (19)

The function r̄ can be interpreted as the maximum reward given the current state
x ∈ X. The function r̂ can be interpreted as its expectation conditional on the
previous state and action. We make the following assumption.

Assumption 3.1. The function r̄ in (19) is bounded above and r̂ is bounded below.

Let G be the set of bounded measurable functions on D and ‖·‖ be the supremum
norm. In spite of the potentially unbounded below rewards, the following result
illustrates that S maps elements of G into itself and the dynamic program can be
solved via the standard contraction mapping theorem.
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Theorem 3.1. If Assumption 3.1 holds, then v∗ in (14) is well-defined,

(1) SG ⊂ G and S is a contraction mapping on (G, ‖·‖),
(2) S admits a unique fixed point g∗ in G, and
(3) Skg converges to g∗ at rate O(βk) under ‖·‖.

Moreover, if there exists a closed subset G1 of G such that SG1 ⊂ G1 and a g-greedy
policy exists for each g ∈ G1, then

(a) g∗ is an element of G1 and satisfies

g∗(x, a) = βEx,av
∗(x′) and v∗(x) = sup

a∈Γ(x)
{r(x, a) + g∗(x, a)} ,

(b) at least one optimal policy exists, and
(c) a feasible policy is optimal if and only if it is g∗-greedy.

3.3. Existence of Optimal Policy. Theorem 3.1 states that under Assumption 3.1,
which is satisfied in many applications, the transformed Bellman operator S is a
contraction. However, it requires a high-level assumption to guarantee that a solution
to the dynamic program exists.

We now discuss some general sufficient conditions for parts (a)–(c) of Theorem 3.1 to
hold. To this end, we introduce an additional assumption.

Assumption 3.2. (1) The sets X and A are complete separable metric spaces, (2) the
reward function r is upper semicontinuous, (3) the feasible correspondence Γ is com-
pact-valued and upper hemicontinuous,17 and (4) the stochastic kernel P is Feller.18

In most applications of interest, Assumption 3.2 is satisfied.

Let G1 be the set of upper semicontinuous functions in G. The following theorem
shows that the conclusions of Theorem 3.1 hold.

Theorem 3.2. If Assumptions 3.1 and 3.2 hold, then G1 is a closed subset of G,
SG1 ⊂ G1, and a g-greedy policy exists for each g ∈ G1. Consequently, all the
conclusions of Theorem 3.1 hold and g∗, v∗ are upper semicontinuous.

17In other words, the set {x ∈ X : Γ(x) ⊂ U} is open for each open subset U ⊂ A. See Aliprantis
and Border (2006, Lemma 17.4) for alternative characterizations of upper hemicontinuity.

18In other words, (x, a) 7→
∫
h(x′)P (x, a, dx′) is bounded and continuous whenever h is.
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4. Applications

Now we complete the discussion of all applications in Section 2. We also provide
additional applications to optimal savings with endogenous labor choice and optimal
consumption-portfolio choice.

4.1. Optimal Savings (Continued). Recall the optimal savings problem of Sec-
tion 2.1. Following the setting in Ma et al. (2020), we allow for capital income risk in
a Markov environment. The agent seeks to solve (2), except that the return R = Rt+1

can also be stochastic.19 For concreteness, suppose that

Rt = R(zt, ξt) and yt = y(zt, ξt), (20)

where R, y are nonnegative measurable functions, zt is a finite state Markov chain,
and ξt is an iid shock that could be vector-valued.

To apply the general theory in Section 3, we assume that the utility function u is
upper semicontinuous, increasing, bounded above, and

inf
z
Eu(y(z, ξ)) > −∞. (21)

Let us verify that the assumptions in Section 3 are satisfied. The state x = (w, z)

consists of the financial wealth w and the exogenous Markov state z. The action
is consumption a = c. The feasible correspondence is Γ(x) = [0, w], which is the
borrowing constraint (2b). The reward function is r(x, a) = u(c). The stochastic
kernel P is defined through the (exogenous) stochastic kernel of the Markov state z,
the distribution of the iid shock ξ, and the budget constraint (2c). The functions r̄

and r̂ in (19) are defined by

r̄(x) = sup
06c6w

u(c) = u(w),

r̂(x, a) = Ezu(R
′(w − c) + y′)

> Ezu(y
′) = Ezu(y(z

′, ξ′)) > −∞,

where we have used the monotonicity of u and (21). Since by assumption u is bounded
above, so is r̄. Therefore, Assumption 3.1 holds. Since u is upper semicontinuous, Γ
is nonempty compact valued, and {zt} is a finite state Markov chain, Assumption 3.2
is also satisfied. Therefore, the conclusions of Theorem 3.1 hold.

19The importance of capital income risk for wealth dynamics is highlighted in Toda (2014),
Benhabib et al. (2015), Cao and Luo (2017), Stachurski and Toda (2019), Fagereng et al. (2020) and
Hubmer et al. (2020), among others.
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Remark 4.1. Ma et al. (2020) (henceforth MST) solve the optimal savings problem
using the Euler equation iteration. Our approach is different because it uses the
(transformed) value function iteration under different assumptions. While we require
that the utility function is bounded above, MST does not require it. On the other
hand, MST requires the utility function to be concave, differentiable, and satisfy

sup
z
Ezu

′(y) < ∞. (22)

The following argument shows that our assumptions are weaker.20 Since u is concave
and differentiable under the assumptions of MST, we obtain

u(1)− u(y) 6 u′(y)(1− y) 6 u′(y),

where we have used u′ > 0 and y > 0. Taking the conditional expectation on z, we
obtain

u(1)−Ezu(y) 6 Ezu
′(y) < ∞

by (22), implying (21).

More importantly, MST requires the condition GβR < 1, where GβR is the long run
geometric average of βRt. Using our approach, we do not require any assumption
(other than nonnegativity and measurability) on the returns Rt.

4.2. Optimal Default (Continued). Recall the optimal default problem studied
in Section 2.2. This setting is a special case of our framework. In particular,

x = (w, y, z), a = (w′, i), X = [−b,∞)× Y × Z and A = [−b,∞)× {0, 1} ,

where i is a discrete choice variable taking values in {0, 1}, and Y and Z are respec-
tively the range spaces of {yt} and {zt}. The reward function r reduces to

r(w, y, w′, i) =

{
u(y) if i = 0,
u(w + y − w′/R) if i = 1.

We have shown that SG ⊂ G, where G is the set of bounded measurable functions on
Z× [−b,∞)× {0, 1}. Moreover, r̂ satisfies

r̂(z, w′) = Ez max {u(y′), u (w′ + y′ + b/R)} > Ezu(y
′),

which is bounded below by (4). Let G1 be the set of functions in G that is increasing
in its second-to-last argument and upper semicontinuous. Through similar steps to

20Ma et al. (2020) allow the discount factor β to be random. It is straightforward to extend our
theory to a setting with stochastic discounting.
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the proof of Theorem 3.2, one can show that SG1 ⊂ G1 and a g-greedy policy exists
for each g ∈ G1. As a result, all the conclusions of Theorem 3.1 are true.

4.3. Job Search (Continued). Recall the job search problem of Section 2.3. This
problem fits into the framework of Section 3.1 if we let choice a take values in {0, 1},
where 0 represents the decision to stop and 1 represents continue,

x = (w, z, c), X = (0,∞)3, A = {0, 1} , Γ(x) = {0, 1} , D = (0,∞)3 × {0, 1}

and the reward function is r(x, a) = u(w)/(1 − β) if a = 0 and r(x, a) = u(c) if
a = 1. We have shown that SG ⊂ G, where G is the set of bounded measurable
functions on (0,∞). Note that, in this case, the function r̂(x, a) reduces to r̂(z) =

Ez max {u(w′)/(1− β), u(c′)} . Then r̂ is bounded below by the inequality (12) and
(10). Since in addition the action set is finite, a g-greedy policy always exists for
each g ∈ G. Let G1 := G. The analysis above implies that all the conclusions of
Theorem 3.1 hold.

4.4. Optimal Savings with Endogenous Labor Choice. As another example
application, consider the optimal savings problem with endogenous labor supply

maximize E

∞∑
t=0

βtu(ct, lt)

subject to 0 6 ct 6 wt + ytlt,

0 6 lt 6 1,

wt+1 = Rt+1(wt − ct + ytlt).

Here ct is consumption, lt is labor supply, yt is wage, wt is financial wealth at time
t excluding current labor income (see Footnote 8), and Rt+1 > 0 is the gross return
on wealth between time t and t + 1. As before assume that R, y take the form (20),
where zt is a finite state Markov chain and ξt is an iid shock.

The state x = (w, y, z) consists of the financial wealth w, wage y, and the exogenous
Markov state z. The action a = (c, l) consists of consumption and labor supply. The
feasible correspondence is

Γ(x) =
{
(c, l) ∈ R2 : 0 6 c 6 w + yl and 0 6 l 6 1

}
.

Suppose that the utility function u is bounded above and increasing in its first argu-
ment. The function r̄ in (19) is defined by

r̄(x) = sup
06l61

sup
06c6w+yl

u(c, l) = sup
06l61

u(w + yl, l),
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which is bounded above. Noting we can bound r̄ from below as

r̄(x) = sup
06l61

u(w + yl, l) > sup
06l61

u(yl, l),

the function r̂ in (19) becomes bounded below if

inf
z
E sup

06l61
u(y(z, ξ)l, l) > −∞, (23)

which is analogous to (21). In summary, by a similar argument to Section 4.1, the
conclusions of Theorem 3.1 hold if u is upper semicontinuous, bounded above, in-
creasing in its first argument, and (23) holds.

4.5. Optimal Consumption-Portfolio Problem. As yet another example appli-
cation, consider the optimal consumption-portfolio problem

maximize E

∞∑
t=0

βtu(ct)

subject to 0 6 ct 6 wt,

θt ∈ Θ(zt),

wt+1 = R(θt, zt+1, ξt+1)(wt − ct) + yt+1.

Here ct is consumption, zt is an exogenous finite state Markov chain, Θ(zt) ⊂ R
J

is the set of admissible portfolios of financial assets j = 1, . . . , J in state zt (θt is
a portfolio), yt = y(zt, ξt) is non-financial income (ξt is an iid shock that could be
vector-valued), wt is financial wealth at time t including current non-financial income,
and R(θt, zt+1, ξt+1) is the gross return on wealth between time t and t+ 1 given the
portfolio θt and shocks (zt+1, ξt+1).

This problem is a special case of our framework. The state x = (w, z) consists of
the financial wealth w and the exogenous Markov state z. The action a = (c, θ)

consists of consumption and portfolio. The feasible correspondence is Γ(x) = [0, w]×
Θ(z). By the same argument as in Section 4.1, if the utility function u is increasing,
bounded above, and (21) holds, then so does Assumption 3.1. Under additional
regularity conditions (u is upper semicontinuous and the portfolio constraint Θ(z) is
nonempty and compact for each z), Assumption 3.2 is satisfied and the conclusions
of Theorem 3.1 hold.
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5. Extensions

In this section, we extend our theory in two important directions. First, we illustrate
how the idea of Q-transform could be extended to handle rewards that are potentially
unbounded above as well as below. Second, we extend the theory of Section 3 to solve
dynamic programs with risk-sensitive preferences.

5.1. Unbounded Above Rewards. In Section 3, we assume that the reward func-
tion is bounded above, although it could be unbounded below. To handle rewards
that are potentially unbounded above and below, we extend our theory by introduc-
ing a weighting function κ, which is a continuous function mapping X to [1,∞). Let
G be the set of measurable functions g : D → R such that g is bounded below and

‖g‖κ := sup
(x,a)∈D

|g(x, a)|
κ(x)

< ∞. (24)

The pair (G, ‖·‖κ) is a Banach space (see, e.g., Bertsekas (2018)). We make the
following assumption.

Assumption 5.1. (1) There exist constants d ∈ R+ and α ∈ (0, 1/β) such that
r̄(x) 6 dκ(x) and Ex,aκ(x

′) 6 ακ(x) for all (x, a) ∈ D, and (2) r̂ in (19) is bounded
below.

Remark 5.1. Note that Assumption 3.1 is a special case of Assumption 5.1 by setting
κ(x) ≡ 1 and α = 1. More importantly, Assumption 5.1 relaxes the classical weighted
supremum norm assumptions greatly (see, e.g., Wessels (1977) or Bertsekas (2018)),
in the sense that we allow the ratio of the reward function to the weighting function
r̄/κ to be unbounded from below, a case where the classical weighted supremum norm
approach struggles (recall Footnote 3).

Although rewards are potentially unbounded above and below, the dynamic program
can be solved by the operator S, as the following theorem shows.

Theorem 5.1. If Assumption 5.1 holds, then v∗ in (14) is well-defined,

(1) SG ⊂ G and S is a contraction mapping on (G, ‖·‖κ),
(2) S admits a unique fixed point g∗ in G, and
(3) Skg converges to g∗ at rate O((αβ)k) under ‖·‖κ.

Moreover, if there exists a closed subset G1 of G such that SG1 ⊂ G1 and a g-greedy
policy exists for each g ∈ G1, then
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(a) g∗ is an element of G1 and satisfies

g∗(x, a) = βEx,av
∗(x′) and v∗(x) = sup

a∈Γ(x)
{r(x, a) + g∗(x, a)} ,

(b) at least one optimal policy exists, and
(c) a feasible policy is optimal if and only if it is g∗-greedy.

Let G1 be the set of upper semicontinuous functions in G and

κ̂(x, a) := Ex,aκ(x
′). (25)

In most applications Assumption 3.2 is satisfied. The following theorem shows that
the continuity of κ̂ is sufficient for the conclusions of Theorem 5.1 to hold.

Theorem 5.2. If Assumptions 5.1 and 3.2 hold and κ̂ in (25) is continuous, then
G1 is a closed subset of G, SG1 ⊂ G1, and a g-greedy policy exists for each g ∈
G1. Consequently, all the conclusions of Theorem 5.1 hold and g∗, v∗ are upper
semicontinuous.

Example 5.1. As an example application of Theorem 5.2, consider the optimal
savings problem (2), where the utility function u can now be unbounded both from
above and below. Suppose that u is upper semicontinuous, increasing, satisfies (21),
and there exist constants p > 0 and q ∈ R such that

u(c) 6 pc+ q for all c > 0. (26)

This condition trivially holds if u is concave, and we can choose q arbitrarily large.

Suppose that asset return and income take the form

Rt = R(ξt) and yt = y(zt, ξt), (27)

where R, y are nonnegative measurable functions, zt is a finite state Markov chain,
and ξt is an iid shock that could be vector-valued.21 In addition, assume

Y := sup
z
Ezy(z

′, ξ′) < ∞, β < 1, and βER < 1. (28)

As in Section 4.1, the state is x = (w, z) and the action is a = c. To apply Theo-
rem 5.2, define the weighting function by κ(x) = pw + q, where q > 1. Since

r̄(x) = sup
06c6w

u(c) = u(w) 6 pw + q = κ(x)

21Unlike the setting in Section 4.1, the return is permitted to depend only on the iid shock ξ.
Treating the general case requires generalizing Theorem 5.1 further such that α depends on x.
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by (26), we can set d = 1 in Assumption 5.1. As we have seen in Section 4.1,
the condition (21) implies that r̂ in (19) is bounded below. Therefore, to satisfy
Assumption 5.1, it remains to verify Ex,aκ(x

′) 6 ακ(x) for some α ∈ (0, 1/β). To
this end, note that

Ex,aκ(x
′)

κ(x)
=

pEz(R
′(w − c) + y′) + q

pw + q
6 pEz(R

′w + y′) + q

pw + q
.

Since the right hand side is a monotone function of w and achieves the supremum at
either w = 0 or w = ∞, we obtain

sup
(x,a)∈D

Ex,aκ(x
′)

κ(x)
6 sup

z
max

{
pEzy

′ + q

q
,EzR

′
}

6 max

{
pY + q

q
,ER

}
, (29)

where we have used the fact that R does not depend on z (by (27)) and (28). Since
q > 1 can be taken arbitrarily large and pY+q

q
→ 1 as q → ∞, the right hand side

of (29) can be made arbitrarily close to max {1,ER}, which is strictly smaller than
1/β by (28). Therefore, we can indeed choose α ∈ (0, 1/β) such that Assumption 5.1
holds with d = 1 and κ(x) = pw+ q for large enough q > 1. Assumption 3.2 trivially
holds. Finally,

κ̂(x, a) := Ex,aκ(x
′) = pEz(R

′(w − c) + y′) + q

is clearly continuous in (x, a) = (w, z, c). Therefore, all the assumptions of Theo-
rem 5.2 are satisfied.

Remark 5.2. Under the assumption that discounting is constant and the asset return
depends only on the iid shock as in (27), the assumptions in Ma et al. (2020) are
strictly stronger than ours, since they assume (28) and the concavity of u (which
implies (26)). (See also Remark 4.1.)

5.2. Risk-Sensitive Preferences. We consider the general setting in Sections 3
but with recursive (non-additive) preferences. Unlike the additively separable case,
in order to define the value function and optimality in the recursive case, let γ > 0 be
the agent’s risk-sensitive coefficient. Given any feasible policy σ ∈ Σ and measurable
function v : X → R ∪ {−∞}, let

Tσv(x) := r(x, σ(x))− β

γ
logEx,σ(x)e

−γv(x′) (30)

for all x ∈ X whenever the expectation is well-defined. Recall r̄ defined in (19). In
this case, the σ-value function vσ is defined at each state x ∈ X by

vσ(x) = lim sup
n→∞

T n
σ r̄(x).
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Setting aside the issue of existence and uniqueness for now, vσ(x) can be interpreted
as the lifetime value of following policy σ forever, starting from current state x. The
value function v∗ and optimal policy σ∗ are defined as in (14). The Bellman equation
associated with the dynamic program with risk-sensitive coefficient γ > 0 is

v(x) = sup
a∈Γ(x)

{
r(x, a)− β

γ
logEx,ae

−γv(x′)

}
. (31)

Letting g(x, a) := −β
γ
logEx,ae

−γv(x′), analogous to the derivation of (16), we obtain
the transformed Bellman equation

g(x, a) = −β

γ
logEx,a exp

(
−γ sup

a′∈Γ(x′)

{r(x′, a′) + g(x′, a′)}

)
. (32)

We define the transformed Bellman operator S by letting Sg(x, a) be the right hand
side of (32) for each g in the space of candidate action-value functions (to be specified
below). A feasible policy σ ∈ Σ is called g-greedy if (18) holds.

We first consider the case with rewards that are bounded above. Let G be the set of
bounded measurable functions on D and ‖·‖ be the supremum norm. The following
theorem generalizes Theorems 3.1 and 3.2 to dynamic programs with risk-sensitive
preferences.

Theorem 5.3. If Assumption 3.1 holds for r̂ defined by

r̂(x, a) := −1

γ
logEx,ae

−γr̄(x′), (33)

(1) SG ⊂ G and S is a contraction mapping on (G, ‖·‖),
(2) S admits a unique fixed point g∗ in G, and
(3) Skg converges to g∗ at rate O(βk) under ‖·‖.

Moreover, if Assumption 3.2 holds, then v∗ is well-defined and

(a) g∗, v∗ are upper semicontinuous and satisfy

g∗(x, a) = −β

γ
logEx,ae

−γv∗(x′) and v∗(x) = sup
a∈Γ(x)

{r(x, a) + g∗(x, a)} ,

(b) at least one optimal policy exists, and
(c) a feasible policy is optimal if and only if it is g∗-greedy.

Next, we study the case with rewards that are unbounded above and below. In what
follows, X is a partially ordered set. Similar to Section 5.1, we introduce a weighting
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function κ, which is continuous increasing and maps X to [1,∞). Let G2 be the set of
measurable function g : D → R such that g(x, a) is increasing in x, bounded below,
and (24) holds.

Suppose the state process evolves according to

xt+1 = f(xt, at, εt+1), (34)

where f is a measurable function, and {εt} is an iid innovation process taking values
in Rm. For each t, we write εt = (ε1t, . . . , εmt) and make the following assumption.

Assumption 5.2. (1) r(x, a) is increasing in x and f(x, a, ε′) is increasing in (x, ε′),
(2) Γ(x1) ⊂ Γ(x2) if x1 6 x2, and (3) ε1t, . . . , εmt are independent for each t.

The following theorem extends Theorem 5.1 and Theorem 5.2 to dynamic decision
problems with risk-sensitive preference.

Theorem 5.4. If Assumptions 5.1 and 5.2 hold for r̂ defined in (33), then

(1) SG2 ⊂ G2 and S is a contraction mapping on (G2, ‖ · ‖κ).
(2) S admits a unique fixed point g∗ in G2, and
(3) Skg converges to g∗ at rate O((αβ)k) under ‖ · ‖κ.

Moreover, if Assumption 3.2 holds, then v∗ is well-defined and

(a) g∗, v∗ are upper semicontinuous and satisfy

g∗(x, a) = −β

γ
logEx,ae

−γv∗(x′) and v∗(x) = sup
a∈Γ(x)

{r(x, a) + g∗(x, a)} ,

(b) at least one optimal policy exists, and
(c) a feasible policy is optimal if and only if it is g∗-greedy.

Example 5.2. Bäuerle and Jaśkiewicz (2018) study an optimal growth model with
risk-sensitive preference. In their setting,

X = A = R+, Γ(x) = [0, x] and r(x, a) = u(x− a),

where x is capital, a is the amount of investment, and u is the utility function. Bäuerle
and Jaśkiewicz (2018) assume that the utility function u is bounded below.

Consider, for example, u(c) = log c and

xt+1 = f(at, εt+1) = ηat + εt+1, {εt}
iid∼ LN(µ, σ2),
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where η > 0. This setup is common in applied works and is not covered by Bäuerle
and Jaśkiewicz (2018), because the logarithmic utility is unbounded below. However,
Theorem 5.4 can be applied. Clearly, Assumptions 3.2 and 5.2 hold. Moreover, since
r̄(x) = u(x) on X, for all (x, a) ∈ D,

Ex,ae
−γr̄(x′) = Ee−γu(ηa+ε′) 6 Ee−γu(ε′) = e−γµ+γ2σ2/2 < ∞.

Hence r̂(x, a) > µ− γσ2/2 on D and Assumption 5.1(2) holds. Let ε̄ := Eεt.

• If η 6 1, then Assumption 5.1(1) holds for all β ∈ (0, 1) by letting α ∈ (1, 1/β)

and κ(x) := x+ ε̄/(α− 1).
• If η > 1, then Assumption 5.1(1) holds for all β ∈ (0, 1/η) by letting α := η

and κ(x) := x+ ε̄/(α− 1).

Assumption 5.1 is now verified. Therefore, all the conclusions of Theorem 5.4 hold.

Remark 5.3. In the state evolution path (34), we impose {εt} to be an iid innovation
process. Indeed, this restriction can be relaxed. For example, we can set {εt} to be
a finite Markov chain, or log εt = µ(zt) + σ(zt)ξt, where {zt} is a finite Markov chain
and {ξt} is an iid innovation process with finite moment generating function, etc. By
expanding the state vector to accommodate the exogenous state εt or zt and adjusting
Assumption 5.2 mildly, the conclusions of Theorem 5.4 still hold in these generalized
settings.

6. Conclusion

We proposed a new approach to solving dynamic programs with unbounded rewards,
based on Q-transforms. The essence of our approach lies in transforming an originally
unbounded dynamic program into a bounded one. We demonstrated via a range of
applications that our method fits well with stochastic dynamic decision problems with
unbounded below rewards and can be extended to handle crucial dynamic programs
that are both unbounded above and unbounded below. In particular, the Q-transform
approach is not limited to solving dynamic programs that are additively separable. We
showed that dynamic decision problems with risk-sensitive preference and unbounded
(above and below) period reward functions are also covered by Q-transform. Although
exploring further recursive preference decision problems via our approach goes beyond
the scope of this study, the theory of Q-transform presented here should serve as a
solid foundation for new work along these lines.
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7. Appendix: Proof of Main Results

Since Theorems 3.1, 3.2 are special cases of Theorems 5.1, 5.2 by setting κ(x) ≡ 1

and α = 1, we only prove the latter. We first show that the σ-value function vσ in
(13) and the value function v∗ in (14) are well-defined.

Lemma 7.1. If Assumption 5.1(1) holds, then for any feasible policy σ ∈ Σ and initial
state x0 = x ∈ X, the quantities vσ(x) in (13) and v∗(x) in (14) are well-defined in
R ∪ {−∞}.

Proof. Using the definition of r̄ in (19) and Assumption 5.1(1), the t-th term on the
right hand side of (13) can be bounded above as

βt
Exr(xt, σ(xt)) 6 βt

Exr̄(xt) 6 βt
Exdκ(xt) 6 βtαtdκ(x) = dκ(x)(αβ)t.

Since by assumption 0 < αβ < 1, summing over t, we obtain

vσ(x) =
∞∑
t=0

βt
Exr(xt, σ(xt)) 6

∞∑
t=0

dκ(x)(αβ)t =
dκ(x)

1− αβ
< ∞.

Therefore, vσ(x) in (13) is well-defined in R ∪ {−∞}. Taking the supremum over
σ ∈ Σ, we obtain

v∗(x) = sup
σ∈Σ

vσ(x) ∈
[
−∞,

dκ(x)

1− αβ

]
,

so v∗(x) in (14) is also well-defined. �

Proof of Theorem 5.1. To see claim (1) holds, we first show that SG ⊂ G. Fix g ∈ G.
By the definition of G, there is a lower bound L ∈ R such that g > L. Then

Sg(x, a) > βEx,a sup
a′∈Γ(x′)

{r(x′, a′) + L} = βEx,a

[
sup

a′∈Γ(x′)

r(x′, a′) + L

]
= β [Ex,ar̄(x

′) + L] = β [r̂(x, a) + L] .

Since by assumption r̂ is bounded below, so is Sg. Moreover, by Assumption 5.1,

Sg(x, a) 6 βEx,a

{
r̄(x′) + sup

a′∈Γ(x′)

g(x′, a′)

}
6 βEx,a(d+ ‖g‖κ)κ(x

′) 6 αβ(d+ ‖g‖κ)κ(x)

for all (x, a) ∈ D. Hence, Sg/κ is bounded above. Since in addition Sg is bounded
below and κ > 1, we have ‖Sg‖κ < ∞, implying Sg ∈ G.
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Obviously, S is an monotone operator, i.e., Sg1 6 Sg2 whenever g1 6 g2. To see that
S is a contraction mapping on (G, ‖·‖κ) of modulus αβ, it suffices to show that22

S(g +Kκ)(x, a) 6 Sg(x, a) + αβKκ(x) for all K ∈ R+. (35)

Condition (35) obviously holds, because by Assumption 5.1, we have

S(g +Mκ)(x, a) = βEx,a sup
a′∈Γ(x′)

{r(x′, a′) + g1(x
′, a′) +Kκ(x′)}

= βEx,a sup
a′∈Γ(x′)

{r(x′, a′) + g1(x
′, a′)}+ βKEx,aκ(x

′)

6 Sg(x, a) + αβKκ(x).

Hence S is a contraction mapping on (G, ‖·‖κ) and claim (1) is verified. Claims (2) and
(3) follow immediately from claim (1) and the Banach contraction mapping theorem.

To see that claims (a)–(c) hold, let V be the set of measurable functions v : X →
R ∪ {−∞} such that (x, a) 7→ βEx,av(x

′) is in G, and define the operators W on V
and M on G respectively as

Wv(x, a) := βEx,av(x
′) and Mg(x) := sup

a∈Γ(x)
{r(x, a) + g(x, a)} .

Then the original Bellman operator T (i.e., Tv equals the right hand side of (15)
given v ∈ V) and the transformed Bellman operator S in (16) can be written as

T = MW and S = WM.

In particular, for each g ∈ G, because S maps G into itself as was shown, W (Mg) =

WMg = Sg ∈ G. Hence, Mg ∈ V by the definition of V . As g is chosen arbitrarily,
this implies that M maps G into V , and thus T maps V into itself.

Since G1 is a closed subset of G and SG1 ⊂ G1, S is also a contraction mapping on
(G1, ‖·‖κ) and the unique fixed point g∗ of S indeed lies in G1. Next, we show that
v̄ := Mg∗ is a fixed point of T in V . Note that v̄ ∈ V because MG ⊂ V . Moreover,

T v̄ = MWv̄ = MWMg∗ = MSg∗ = Mg∗ = v̄.

Therefore, v̄ is a fixed point of T in V , as was to be shown.

22For all g1, g2 ∈ G, we have g1(x, a) 6 g2(x, a) + ‖g1 − g2‖κ κ(x). The monotonicity of S and
(35) then imply that Sg1(x, a) 6 Sg2(x, a) + αβ ‖g1 − g2‖κ κ(x). Switching the roles of g1 and g2

yields ‖Sg1 − Sg2‖κ 6 αβ ‖g1 − g2‖κ.
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Since v̄ = Mg∗ and g∗ = Sg∗ as were shown, we have g∗ = WMg∗ = Wv̄. To verify
claim (a), it remains to show that v̄ equals the value function v∗ in (14). For all
x0 ∈ X and σ ∈ Σ, because v̄ = T v̄, the definition of T implies that

v̄(x0) > r(x0, σ(x0)) + βEx0,σ(x0)v̄(x1)

> r(x0, σ(x0)) + βEx0,σ(x0)

{
r(x1, σ(x1)) + βEx1,σ(x1)v̄(x2)

}
= r(x0, σ(x0)) + βEx0,σ(x0)r(x1, σ(x1)) + β2

Ex0,σ(x0)Ex1,σ(x1)v̄(x2)

>
N∑
t=0

βt
Ex0,σ(x0) · · ·Ext−1,σ(xt−1)r(xt, σ(xt)) + βN+1

Ex0,σ(x0) · · ·ExN ,σ(xN )v̄(xN+1)

=
N∑
t=0

βt
Ex0r(xt, σ(xt)) + βN

Ex0,σ(x0) · · ·ExN−1,σ(xN−1)g
∗(xN , σ(xN)). (36)

Notice that, by Assumption 5.1(1), we have∣∣βN
Ex0,σ(x0) · · ·ExN−1,σ(xN−1)g

∗(xN , σ(xN))
∣∣

6 βN
Ex0,σ(x0) · · ·ExN−1,σ(xN−1) |g∗(xN , σ(xN))|

6 βN
Ex0,σ(x0) · · ·ExN−1,σ(xN−1) ‖g∗‖κ κ(xN)

6 (αβ)N ‖g∗‖κ κ(x0) → 0 as N → ∞.

Letting N → ∞ in (36), Lemma 7.1 implies that v̄(x0) > vσ(x0). Since x0 ∈ X and
σ ∈ Σ are arbitrary, we have v̄ > v∗. Moreover, because g∗ = Wv̄ and g∗ ∈ G1 implies
that a g∗-greedy policy σ∗ exists, all the inequalities in (36) hold with equality once
we let σ = σ∗. In other words, we have v̄ = vσ∗ 6 v∗. In summary, we have shown
that v̄ = v∗. Hence, g∗ = Wv∗, v∗ = Mg∗, and claim (a) holds.

Moreover, the above arguments also imply that σ∗ is an optimal policy (i.e., v∗ = vσ∗)
if it is g∗-greedy. Because a g∗-greedy policy exists by assumption, the set of optimal
policies is nonempty and claim (b) holds. To see that claim (c) holds, it remains to
show that any optimal policy σ∗ is g∗-greedy. Note that

r(x, σ∗(x)) + βg∗(x, σ∗(x)) = r(x, σ∗(x)) + βEx,σ∗(x)v
∗(x′)

= r(x, σ∗(x)) + βEx,σ∗(x)vσ∗(x′)

= vσ∗(x) = v∗(x) = Tv∗(x) = MWv∗(x) = Mg∗(x),

where the first and last equalities hold since g∗ = Wv∗, the second and fourth equal-
ities hold because σ∗ is optimal, the third equality equality holds by the definition of
vσ∗ , and the fifth equality holds because v∗ is a fixed point of T as was shown above.
Therefore, σ∗ is a g∗-greedy policy. We have now shown that claim (c) holds. �
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Proof of Theorem 5.2. To apply Theorem 5.1, it suffices to prove that G1 is a closed
subset of G, SG1 ⊂ G1, and that a g-greedy policy exists for each g ∈ G1.

To show that G1 is a closed subset, let {gn} be a sequence in G1 such that ‖gn − g0‖κ →
0 for some g0 ∈ G. Because (G, ‖·‖κ) is complete, it suffices to show that g0 is upper
semicontinuous. For all (x0, a0) ∈ D and y > g0(x0, a0). Let ε := y− g0(x0, a0). Since
κ is continuous and gn is upper semicontinuous for all n, there exist N ∈ N and a
neighborhood B of (x0, a0) such that for all (x, a) ∈ B,

|gN(x, a)− g0(x, a)| < ε/3 and gN(x, a) < gN(x0, a0) + ε/3.

Hence, g0(x, a) < gN(x, a) + ε/3 < gN(x0, a0) + 2ε/3 < g0(x0, a0) + ε = y for each
(x, a) ∈ B, implying that g0 is upper semicontinuous.

Fix g ∈ G1. Note that r+ g is upper semicontinuous because both r and g are upper
semicontinuous. Since, in addition, Γ is compact-valued and upper hemicontinuous,
Lemma 1 of Jaśkiewicz and Nowak (2011) implies that a g-greedy policy exists, and
that x 7→ hg(x) := supa∈Γ(x) {r(x, a) + g(x, a)} is upper semicontinuous.

Since Sg ∈ G by Theorem 5.1, to see that SG1 ⊂ G1, it remains to show that Sg is
upper semicontinuous. Assumption 5.1 and the definition of G1 yield hg 6 (d+‖g‖κ)κ,
so Lemma 7 of Jaśkiewicz and Nowak (2011) implies Sg(x, a) = βEx,ahg(x

′) is upper
semicontinuous. Hence, SG1 ⊂ G1.

All the claims of Theorem 5.2 then follow from Theorem 5.1. �

Proof of Theorem 5.3. To see claims (1)–(3) hold, we first show that SG ⊂ G. Fix
g ∈ G. Since g > −‖g‖, we obtain

Sg(x, a) > −β

γ
logEx,a exp

(
−γ sup

a′∈Γ(x′)

{r(x′, a′)− ‖g‖}

)

= −β

γ
logEx,ae

−γ(r̄(x′)−∥g∥) = β[r̂(x, a)− ‖g‖],

where the last equality uses (33). Since by assumption r̂ is bounded below, so is Sg.
A similar argument yields Sg(x, a) 6 β[r̂(x, a) + ‖g‖], so Sg is bounded above. This
shows that S is a self map on G.

To show that S is a contraction mapping, we verify Blackwell (1965)’s sufficient
conditions. S is clearly monotone. Let h(x, a) := r(x, a) + g(x, a). If K > 0 is any
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constant, then for any g ∈ G we have

S(g +K)(x, a) = −β

γ
logEx,a exp

(
−γ sup

a′∈Γ(x′)

{h(x′, a′) +K}

)

= −β

γ
logEx,a exp

(
−γ sup

a′∈Γ(x′)

h(x′, a′)

)
+ βK = Sg(x, a) + βK,

so the discounting property holds. Therefore, claims (1)–(3) hold.

Let V be all measurable maps v : X → R∪{−∞} such that (x, a) 7→ −β
γ
logEx,ae

−γv(x′)

is in G. Define the operators W on V and M on G respectively as

Wv(x, a) := −β

γ
logEx,ae

−γv(x′) and Mg(x) := sup
a∈Γ(x)

{r(x, a) + g(x, a)} . (37)

The original Bellman operator T and the transformed Bellman operator S can then
be written as T = MW and S = WM . Let G1 be the set of upper semicontinuous
functions in G. Similar to the proof of Theorem 5.1, v̄ := Mg∗ is a fixed point of T
in V and g∗ = Wv̄. Moreover, a similar argument to the proof of Theorem 5.2 shows
that G1 is a closed subset of G, S maps G1 into itself, the unique fixed point g∗ of S
is in G1, and a g-greedy policy exists for each g ∈ G1. To see that claim (a) holds, it
remains to verify v∗ = v̄.

Fix σ ∈ Σ. The definition of T and the monotonicity of Tσ in (30) imply that

v̄ = T v̄ > Tσv̄ > . . . > T n
σ v̄ (38)

for all n ∈ N. One can show that, for all constant ℓ ∈ R and x ∈ X,

T n
σ (r̄ + ℓ)(x) = T n

σ r̄(x) + βnℓ. (39)

Since β ∈ (0, 1), letting n → ∞ yields

vσ(x) = lim sup
n→∞

T n
σ r̄(x) = lim sup

n→∞
T n
σ (r̄ + ℓ)(x)

for all x ∈ X and ℓ ∈ R. Since v̄ ∈ [r̄ − ‖g∗‖, r̄ + ‖g∗‖], by the monotonicity of Tσ,

lim sup
n→∞

T n
σ v̄(x) = lim sup

n→∞
T n
σ r̄(x) = vσ(x) (40)

for all x ∈ X. Letting n → ∞ in (38) then yields v̄ > vσ. Since σ is chosen arbitrarily,
this implies v̄ > v∗. To see conversely v̄ 6 v∗, we define Mσ at each g ∈ G by

Mσg(x) := r(x, σ(x)) + g(x, σ(x)). (41)
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Then Tσ = MσW . Since v̄ is a fixed point of T , g∗ = Wv̄, and a g∗-greedy policy σ∗

exists as were shown, we have

v̄ = T v̄ = MWv̄ = Mg∗ = Mσ∗g∗ = Mσ∗Wv̄ = Tσ∗ v̄.

Hence, v̄ = T n
σ∗ v̄ for all n ∈ N. Letting n → ∞ and then using (40) yield v̄ = vσ∗ 6 v∗.

In summary, we have shown that v̄ = v∗. Claim (a) is now verified.

The above arguments also imply that a policy is optimal if it is g∗-greedy, and an
optimal policy exits (since there exists a g∗-greedy policy). Hence claim (b) holds.
To see that claim (c) holds, it remains to show that any optimal policy σ∗ must be
g∗-greedy, equivalently, v∗ = vσ∗ implies Mσ∗g∗ = Mg∗.

To see this, because v̄ = v∗ and g∗ = Wv̄, we have

Mσ∗g∗ = Mσ∗Wv∗ = Tσ∗v∗ and Mg∗ = MWv∗ = Tv∗.

Since v∗ = vσ∗ and vσ∗ = lim supn→∞ T n
σ∗v∗ as shown above,

Mσ∗g∗ = Tσ∗

(
lim sup
n→∞

T n
σ∗v∗

)
. (42)

Because e−γ lim supn→∞ xn = lim infn→∞ e−γxn for a given sequence {xn}, the Fatou’s
lemma implies that, for all x ∈ X,

Ex,σ∗(x)e
−γ lim supn→∞ Tn

σ∗v
∗(x′) 6 lim inf

n→∞
Ex,σ∗(x)e

−γTn
σ∗v

∗(x′).

So W (lim supn→∞ T n
σ∗v∗) > lim supn→∞W (T n

σ∗v∗). Applying M∗
σ on both sides and

then using (42), Tσ∗ = Mσ∗W , and the definition of Mσ∗ yield

Mσ∗g∗ = Tσ∗

(
lim sup
n→∞

T n
σ∗v∗

)
> lim sup

n→∞
T n+1
σ∗ v∗ = vσ∗ = v∗ = Tv∗ = Mg∗.

Because Mσ∗g∗ 6 Mg∗ by definition, we must have Mσ∗g∗ = Mg∗, equivalently, σ∗ is
g∗-greedy. Claim (c) is verified and the proof is now complete. �

Proof of Theorem 5.4. Let V2 be the set of measurable maps v : X → R∪{−∞} such
that (x, a) 7→ −β

γ
logEx,ae

−γv(x′) is in G2. Define the operators W on V2 and M on
G2 as in (37). By Jensen’s inequality and Assumption 5.1(1), for all (x, a) ∈ D and
K ∈ R+, we have

W (Kκ)(x, a) = −β

γ
logEx,ae

−γKκ(x′) 6 βEx,aKκ(x′) 6 αβKκ(x). (43)

We first show that SG2 ⊂ G2. Fix g ∈ G2. Assumption 5.1(1) implies that

Mg(x) 6 r̄(x) + ‖g‖κκ(x) 6 (d+ ‖g‖κ)κ(x)
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for all x ∈ X. Using the monotonicity of W and (43) then gives

Sg(x, a) = WMg(x, a) 6 W ((d+ ‖g‖κ)κ)(x, a) 6 αβ(d+ ‖g‖κ)κ(x)

for all (x, a) ∈ D. Hence, Sg/κ is bounded above. Moreover, a similar argument to
the proof of Theorem 5.3 shows that Sg is bounded below.

To see that Sg(x, a) is increasing in x, let x1, x2 ∈ X with x1 6 x2 and fix a ∈ Γ(x1).
By Assumption 5.2(1)–(2), x′

1 := f(x1, a, ε
′) 6 f(x2, a, ε

′) =: x′
2 and Γ(x′

1) ⊂ Γ(x′
2).

Since in addition r(x, a) and g(x, a) are increasing in x, we have

Mg(x′
1) = sup

a′∈Γ(x′
1)

{r(x′
1, a

′) + g(x′
1, a

′)} 6 sup
a′∈Γ(x′

2)

{r(x′
1, a

′) + g(x′
1, a

′)}

6 sup
a′∈Γ(x′

2)

{r(x′
2, a

′) + g(x′
2, a

′)} = Mg(x′
2).

Noting that Mg(x′
i) = Mg(f(xi, a, ε

′)) for i = 1, 2,

Sg(x1, a) = −β

γ
logEe−γMg(f(x1,a,ε′)) 6 −β

γ
logEe−γMg(f(x2,a,ε′)) = Sg(x2, a).

Hence, Sg(x, a) is increasing in x. We have now shown that SG2 ⊂ G2.

Next, we show that S is a contraction on (G2, ‖ · ‖κ). Let h1, h2 : X → R be increas-
ing functions on X. By Assumption 5.2(1), ε′ 7→ hi(f(x, a, ε

′)) is increasing for all
(x, a) ∈ D and i = 1, 2. Since Assumption 5.2(3) implies that ε′ is independent across
dimensions, applying the Fortuin–Kasteleyn–Ginibre inequality (Fortuin et al., 1971)
gives

Ex,ae
−γ(h1+h2)(x′) = Ee−γh1(f(x,a,ε′))e−γh2(f(x,a,ε′))

> Ee−γh1(f(x,a,ε′))Ee−γh2(f(x,a,ε′)) = Ex,ae
−γh1(x′)

Ex,ae
−γh2(x′)

for all (x, a) ∈ D whenever the expectation is well-defined. Therefore,

W (h1 + h2)(x, a) 6 Wh1(x, a) +Wh2(x, a) (44)

for all (x, a) ∈ D and real-valued increasing functions h1, h2 on X. By the definition
of M , for all x ∈ X,

M(g +Kκ)(x) = Mg(x) +Kκ(x).

Because both Mg and κ are increasing on X, applying (43) and (44) yields

S(g +Kκ)(x, a) = WM(g +Kκ)(x, a) = W (Mg +Kκ)(x, a)

6 WMg(x, a) +W (Kκ)(x, a) 6 Sg(x, a) + αβKκ(x)
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for all x ∈ X. Since in addition S is monotone, S is a contraction mapping on G2

as was to be shown. Moreover, because (G2, ‖ · ‖κ) is a Banach space, claims (1)–(3)
follow immediately by the Banach contraction mapping theorem.

Let G3 be the set of upper semicontinuous functions in G2. Similar to the proof of
Theorem 5.1, we can show that v̄ := Mg∗ is a fixed point of T in V2 and g∗ = Wv̄. A
similar argument to the proof of Theorem 5.2 shows that G3 is a closed subset of G2,
S maps G3 into itself, the unique fixed point g∗ of S is in G3, and a g-greedy policy
exists for each g ∈ G3. To see claim (a) holds, it remains to verify v∗ = v̄.

To that end, we first show that (40) holds in the current setting. For each σ ∈ Σ and
g ∈ G2, let Mσg be defined as in (41). By the monotonicity of Mσ, (43) and (44),

Tσ(r̄ +Kκ)(x) = MσW (r̄ +Kκ)(x) 6 Mσ(Wr̄ +W (Kκ))(x)

= MσWr̄(x) +W (Kκ)(x, σ(x)) 6 Tσr̄(x) + αβKκ(x)

for all x ∈ X and K ∈ R+. Induction shows that, for all x ∈ X, K ∈ R+ and n ∈ N,

T n
σ (r̄ +Kκ)(x) 6 T n

σ r̄(x) + (αβ)nKκ(x). (45)

Because v̄ = Mg∗ and g∗ is in G2, g has a lower bound L ∈ R and

r̄ + L 6 v̄ 6 r̄ + ‖g∗‖κκ,

where both r̄ and κ are increasing functions on X. The monotonicity of Tσ, (39) and
(45) then imply that, for all x ∈ X and n ∈ N,

T n
σ r̄(x) + (αβ)nL 6 T n

σ v̄(x) 6 T n
σ r̄(x) + (αβ)n‖g∗‖κκ(x).

Letting n → ∞ yields (40). Similar to the proof of Theorem 5.3, we can show that
(38) holds in the current setting. Letting n → ∞ in (38) then gives v̄ > vσ and thus
v̄ > v∗ since σ is arbitrary. A similar argument to the proof of Theorem 5.3 shows
that v̄ 6 v∗. In summary, v̄ = v∗. Claim (a) is verified.

The proof of claims (b)–(c) is same to the proof of claims (b)–(c) in Theorem 5.3 and
thus omitted. Therefore, all the statements of the theorem hold. �
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