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Abstract

Empirical evidence suggests that the rich have higher propensity to
save than do the poor. While this observation may appear to contradict
the homotheticity of preferences, we theoretically show that that is not
the case. Specifically, we consider an income fluctuation problem with
homothetic preferences and general shocks and prove that consumption
functions are asymptotically linear, with an exact analytical characteriza-
tion of asymptotic marginal propensities to consume (MPC). We provide
necessary and sufficient conditions for the asymptotic MPCs to be zero.
We solve a calibrated model with standard constant relative risk aver-
sion utility and show that asymptotic MPCs can be zero in empirically
plausible settings, implying an increasing and large saving rate of the rich.

Keywords: asymptotic linearity, income fluctuation problem, mono-
tone convex map, saving rate.

JEL codes: C65, D15, D52, E21.

1 Introduction

Empirical evidence suggests that the rich have higher propensity to save than
do the poor.1 This fact implies that the rich have lower marginal propensity
to consume (MPC), which has important economic consequences. For example,
when the rich have lower MPC, the consumption tax, which is a popular tax in-
strument in many countries, becomes regressive and may not be desirable from
equity perspectives. MPC heterogeneity also implies that the wealth distribu-
tion matters for determining aggregate demand and hence monetary and fiscal
policies (Kaplan, Moll, and Violante, 2018; Mian, Straub, and Sufi, 2020).

∗We thank Chris Carroll, Émilien Gouin-Bonenfant, Ben Moll, Johannes Wieland, and
seminar participants at CRETA Economic Theory Conference for valuable feedback and sug-
gestions. A previous version of this paper was circulated under the title “Asymptotic Marginal
Propensity to Consume”.
†International School of Economics and Management, Capital University of Economics and

Business. Email: qingyin.ma@cueb.edu.cn.
‡Department of Economics, University of California San Diego. Email: atoda@ucsd.edu.
1Quadrini (1999) documents that entrepreneurs (who tend to be rich) have high saving

rates. Dynan, Skinner, and Zeldes (2004) document that there is a positive association be-
tween saving rates and lifetime income. More recently, using Norwegian administrative data,
Fagereng, Holm, Moll, and Natvik (2019) show that among households with positive net
worth, saving rates are increasing in wealth.
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Why do the rich save so much? Intuition suggests that canonical models
of consumption and savings that feature homothetic preferences are unable to
explain the high saving rate of the rich: in such models, consumption (hence sav-
ing) functions should be asymptotically linear in wealth due to homotheticity,
implying an asymptotically constant saving rate. A seemingly obvious explana-
tion for the high saving rate of the rich is that preferences are not homothetic.2

However, non-homothetic preferences have some undesirable theoretical proper-
ties. First, they are inconsistent with balanced growth (whereas many aggregate
economic variables such as real per capita GDP are near unit root processes),
at least in basic models in which preference parameters are constant. Second,
non-homothetic utility functions have more parameters than homothetic ones,
which introduces arbitrariness in model specification and calibration.

In this paper we theoretically show that the intuition of “homotheticity im-
plies (asymptotic) linearity” is only partially correct. We consider a standard
income fluctuation problem with (homothetic) constant relative risk aversion
(CRRA) preferences but with capital and labor income risk in a general Marko-
vian setting. We prove that the consumption functions are asymptotically linear
in wealth, or the asymptotic marginal propensities to consume converge to some
constants. While this statement is intuitive, there is one surprise: we obtain
an exact analytical characterization of the asymptotic MPCs and prove that
they can be zero. The asymptotic MPCs depend only on risk aversion and the
stochastic processes for the discount factor and return on wealth, and are inde-
pendent of the income process. Furthermore, we derive necessary and sufficient
conditions for zero asymptotic MPCs. When the asymptotic MPCs are zero,
the saving rates of the rich converge to one as agents get wealthier. Thus, we
provide a potential explanation for why the rich save so much, and we do so
with standard homothetic preferences.

To prove that consumption functions are asymptotically linear with partic-
ular slopes, we apply policy function iteration as in Li and Stachurski (2014)
and Ma, Stachurski, and Toda (2020). Since agents cannot consume more than
their financial wealth in the presence of borrowing constraints, a natural up-
per bound on consumption is asset, which is linear with a slope of 1. Starting
from this candidate consumption function, policy function iteration results in
increasingly tighter upper bounds. On the other hand, we directly obtain lower
bounds by restricting the space of candidate consumption functions such that
they have linear lower bounds with specific slopes. We analytically derive these
slopes based on the fixed point theory of monotone convex maps developed in
Du (1990), which has recently been applied in economics by Toda (2019) and
Borovička and Stachurski (2020). Finally, we show that the upper and lower
bounds thus obtained have identical slopes, implying the asymptotic linearity
of consumption functions with an exact characterization of asymptotic MPCs.

To assess the empirical plausibility of our new mechanism, we numerically
solve an income fluctuation problem with CRRA utility and capital income risk

2For example, Carroll (2000) considers a ‘capitalist spirit’ model in which agents directly
get utility from holding wealth, where the utility functions for consumption and wealth have
different curvatures. De Nardi (2004) considers a model with bequest, which is mathemat-
ically similar. Straub (2019) estimates that the elasticity of consumption with respect to
permanent income is below 1 (which implies concavity of consumption functions) and uses
non-homothetic preferences to explain it. Another possibility is to introduce frictions such as
portfolio adjustment costs (Fagereng, Holm, Moll, and Natvik, 2019).
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calibrated to the U.S. economy. We find that with moderate risk aversion (above
4–5), the asymptotic MPCs become zero and the saving rates of the rich are
increasing and approach 1.

The rest of the paper is organized as follows. After a brief discussion of
the related literature, Section 2 introduces a general income fluctuation prob-
lem, proves the asymptotic linearity of consumption functions with homothetic
preferences, and discusses some examples. Section 3 applies the theory to a
calibrated model. Section 4 contains the proofs.

1.1 Related literature

Our paper is related to the theoretical studies of the income fluctuation problem,
which is a key building block of heterogeneous-agent models in modern macroe-
conomics.3 Chamberlain and Wilson (2000) study the existence of a solution
assuming bounded utility and applying the contraction mapping theorem. Li
and Stachurski (2014) relax the boundedness assumption and apply policy func-
tion iteration. Benhabib, Bisin, and Zhu (2015) consider a special model with
CRRA utility, constant discounting, and iid and mutually independent returns
and income shocks to study the tail behavior of wealth. Ma, Stachurski, and
Toda (2020) allow for stochastic discounting and returns on wealth in a general
Markovian setting and discuss the ergodicity, stochastic stability, and tail be-
havior of wealth. Carroll (2020) examines detailed properties of a special model
with CRRA utility, constant discounting and risk-free rate, and iid permanent
and transitory income shocks. While the main focus of these papers is the ex-
istence, uniqueness, and computation of a solution, we focus on the asymptotic
behavior of consumption with general shocks. Carroll and Kimball (1996) show
the concavity of consumption functions in a class of income fluctuation prob-
lems, which implies asymptotic linearity. However, they do not characterize the
asymptotic MPCs as we do.

2 Asymptotic linearity of consumption functions

In this section we introduce a general income fluctuation problem following the
setting in Ma, Stachurski, and Toda (2020) and study the asymptotic property
of the consumption functions when preferences are homothetic.

2.1 Income fluctuation problem

Time is discrete and denoted by t = 0, 1, 2, . . . . Let at be the financial wealth of
the agent at the beginning of period t. The agent chooses consumption ct ≥ 0
and saves the remaining wealth at − ct. The period utility function is u and
the discount factor, gross return on wealth, and non-financial income in period

3See, for example, Cao (2020) and Açıkgöz (2018) for the existence of equilibrium with and
without aggregate shocks, where the theoretical properties of the income fluctuation problem
play an important role. Lehrer and Light (2018) and Light (2018) prove comparative statics
results regarding savings. Light (2020) proves the uniqueness of stationary equilibrium in an
Aiyagari model that exhibits a certain gross substitute property.
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t are denoted by βt, Rt, Yt, where we normalize β0 = 1. Thus the agent solves

maximize E0

∞∑
t=0

(
t∏
i=0

βi

)
u(ct)

subject to at+1 = Rt+1(at − ct) + Yt+1, (2.1a)

0 ≤ ct ≤ at, (2.1b)

where the initial wealth a0 = a > 0 is given, (2.1a) is the budget constraint,
and (2.1b) implies that the agent cannot borrow.4 The stochastic processes
{βt, Rt, Yt}t≥1 obey

βt = β(Zt, εt), Rt = R(Zt, ζt), Yt = Y (Zt, ηt), (2.2)

where β,R, Y are nonnegative measurable functions, {Zt}t≥0 is a time-homogeneous
finite state Markov chain taking values in Z = {1, . . . , Z} with a transition prob-
ability matrix P , and the innovation processes {εt} , {ζt} , {ηt} are independent
and identically distributed (iid) over time and mutually independent.

We introduce the following notation. For a square matrix A, the scalar r(A)
denotes its spectral radius (largest absolute value of all eigenvalues), i.e.,

r(A) := max {|α| |α is an eigenvalue of A} . (2.3)

The spectral radius (2.3) plays an important role in the subsequent discussion.

The symbols β,R, Y are shorthand of β(Z, ε), R(Z, ζ), Y (Z, η) and β̂, R̂, Ŷ are

shorthand of β(Ẑ, ε̂), R(Ẑ, ζ̂), Y (Ẑ, η̂). Define the diagonal matrix Dβ by

Dβ(z, z) = Ez β = E [β(Z, ε) |Z = z] = Eβ(z, ε).

More generally, for any stochastic process {Xt} such that the distribution of Xt

conditional on all past information and Zt = z depends only on z, let DX be
the diagonal matrix such that DX(z, z) = EzX = E [X |Z = z]. Consider the
following assumptions.

Assumption 1. The utility function u : [0,∞) → R ∪ {−∞} is twice contin-
uously differentiable on (0,∞) and satisfies u′ > 0, u′′ < 0, u′(0) = ∞, and
u′(∞) < 1.

Assumption 1 is essentially the usual Inada condition together with mono-
tonicity and concavity.

Assumption 2. The following conditions hold:

1. Ez β <∞ and Ez βR <∞ for all z ∈ Z,

2. r(PDβ) < 1 and r(PDβR) < 1,

3. Ez Y <∞ and Ez u
′(Y ) <∞ for all z ∈ Z.

The condition r(PDβ) < 1 generalizes β < 1 to the case with random
discount factors. The condition r(PDβR) < 1 generalizes the ‘impatience’ con-
dition βR < 1 to the stochastic case. Under these two assumptions, the income
fluctuation problem (2.1) admits a unique solution.

4The no-borrowing condition at − ct ≥ 0 is without loss of generality as discussed in
Chamberlain and Wilson (2000) and Li and Stachurski (2014).
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Theorem 2.1. Suppose Assumptions 1 and 2 hold. Then the income fluctuation
problem (2.1) has a unique solution. Furthermore, the consumption function
c(a, z) can be computed by policy function iteration.

Proof. See Ma, Stachurski, and Toda (2020, Theorem 2.2).5

‘Policy function iteration’ means the following. When the borrowing con-
straint ct ≤ at does not bind, the Euler equation implies

u′(ct) = Et βt+1Rt+1u
′(ct+1).

If ct = at, then clearly u′(ct) = u′(at). Therefore combining these two cases, we
can compactly express the Euler equation as

u′(ct) = max {Et βt+1Rt+1u
′(ct+1), u′(at)} .

Based on this observation, given a candidate consumption function c(a, z), the
policy function iteration updates the consumption function by the value ξ =
Tc(a, z) that solves

u′(ξ) = max
{

Ez β̂R̂u
′(c(R̂(a− ξ) + Ŷ , Ẑ)), u′(a)

}
. (2.4)

Let C be the space of candidate consumption functions such that c : (0,∞)×Z→
R is continuous, is increasing in the first element, 0 < c(a, z) ≤ a for all a > 0
and z ∈ Z, and

sup
(a,z)∈(0,∞)×Z

|u′(c(a, z))− u′(a)| <∞.

For c, d ∈ C, define

ρ(c, d) = sup
(a,z)∈(0,∞)×Z

|u′(c(a, z))− u′(d(a, z))| . (2.5)

When Assumptions 1 and 2 hold, Theorem 2.2 of Ma, Stachurski, and Toda
(2020) shows that C is a complete metric space with metric ρ and T : C → C
defined as Tc(a, z) = ξ that solves (2.4) is a contraction mapping. We call the
operator T the time iteration operator.6

Exploiting policy function iteration, Ma, Stachurski, and Toda (2020) show
several properties such as (i) consumption and savings are increasing in wealth
and (ii) consumption is increasing in income.

2.2 Asymptotic linearity of consumption functions

To study the asymptotic behavior of consumption, we strengthen Assumption 1
as follows.

5In addition to Assumptions 1 and 2, Ma, Stachurski, and Toda (2020) assume that the
transition probability matrix P is irreducible. However, irreducibility is required only for their
ergodicity result, not for existence and uniqueness of a solution.

6The time iteration operator was introduced by Coleman (1990). Several papers such as
Datta, Mirman, and Reffett (2002), Rabault (2002), Morand and Reffett (2003), Kuhn (2013),
and Li and Stachurski (2014) use this approach to establish existence of solutions and study
theoretical properties.
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Assumption 1’. The utility function exhibits constant relative risk aversion
γ > 0: we have

u(c) =

{
c1−γ

1−γ , (γ 6= 1)

log c. (γ = 1)
(2.6)

Furthermore, Ez βR
1−γ <∞ for all z.7

Theorem 2.2 below, which is our main theoretical result, shows that when
the utility function exhibits constant relative risk aversion, the consumption
functions are asymptotically linear and characterizes the asymptotic MPCs. To
avoid overwhelming the reader with notation and technicalities, we maintain
the additional condition Ez βR

1−γ < ∞ as in Assumption 1’. Furthermore,
Theorem 2.2 only provides a necessary and almost sufficient condition for the
asymptotic MPCs to be zero. We provide a complete characterization in Theo-
rem 2.5 below.

Theorem 2.2 (Asymptotic linearity). Suppose Assumptions 1’ and 2 hold. Let
D = DβR1−γ be the diagonal matrix whose (z, z)-th element is Ez βR

1−γ <∞.
Then the followings are true:

1. If r(PD) < 1, then for all z ∈ Z we have

lim
a→∞

c(a, z)

a
=: c̄(z) > 0, (2.7)

where c̄(z) = x∗(z)−1/γ and x∗ = (x∗(z))Zz=1 ∈ RZ+ is the unique finite
solution to the system of equations

x(z) = (Fx)(z) :=
(

1 + (PDx)(z)1/γ
)γ
, z = 1, . . . , Z. (2.8)

2. If r(PD) ≥ 1 and PD is irreducible, then for all z ∈ Z we have

lim
a→∞

c(a, z)

a
= 0.

The proof of Theorem 2.2 is relegated to Section 4. Here we heuristically
discuss the intuition for why we would expect the conclusion of Theorem 2.2 to
hold. Suppose the limit (2.7) exists. Assuming that the borrowing constraint
does not bind, the Euler equation (2.4) implies

u′(ξ) = Ez β̂R̂u
′(c(R̂(a− ξ) + Ŷ , Ẑ)),

where ξ = c(a, z). Setting u′(c) = c−γ as in Assumption 1’, setting c(a, z) =
c̄(z)a motivated by (2.7), multiplying both sides by aγ , letting a → ∞, and
interchanging expectations and limits, it must be

c̄(z)−γ = Ez β̂R̂
1−γ c̄(Ẑ)−γ(1− c̄(z))−γ . (2.9)

Dividing both sides of (2.9) by (1− c̄(z))−γ and setting x(z) = c̄(z)−γ , we obtain

x(z) =

(
1 +

(
Ez β̂R̂

1−γx(Ẑ)
)1/γ)γ

, z = 1, . . . , Z. (2.10)

7We use the convention βR1−γ = (βR)R−γ and 0 · ∞ = 0. Then Ez βR1−γ ∈ [0,∞] is
well-defined even if γ > 1 and (β,R) = (0, 0) with positive probability.
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Noting that β̂, R̂ depend only on Ẑ and iid innovations, we have

Ez β̂R̂
1−γx(Ẑ) =

Z∑
ẑ=1

P (z, ẑ) Eẑ β̂R̂
1−γx(ẑ).

Therefore letting P be the transition probability matrix and D = DβR1−γ be
the diagonal matrix whose (z, z)-th element is Ez βR

1−γ < ∞, we can rewrite
(2.10) as (2.8). This discussion motivates the fixed point equation (2.8).

Next, we discuss the intuition for the spectral condition r(PD) ≷ 1. When
the elements of the vector x ∈ RZ+ are large, since PD is a nonnegative matrix,
it follows from the definition of F in (2.8) that

Fx ≈ PDx.

Since for large x the function x 7→ Fx is almost linear, whether iterating x 7→ Fx
converges or not depends on whether the largest eigenvalue of the coefficient
matrix PD is less or greater than 1. When r(PD) < 1, F in (2.8) behaves
like a contraction and we would expect it to have a unique fixed point. When
r(PD) ≥ 1, because F is monotonic, we would expect the iteration of x 7→ Fx
to diverge to infinity, and hence c̄(z) = x(z)−1/γ to converge to 0.

Theorem 2.2 roughly says two things: with homothetic preferences, (i) con-
sumption functions are asymptotically linear, and (ii) the asymptotic MPCs can
be zero. The first point is not surprising based on the intuition of scale invari-
ance with homothetic preferences. The second point is nontrivial and surprising,
and it depends on whether the condition

r(PDβR1−γ ) < 1 (2.11)

holds or not. A condition of the form Ez β̂R̂
1−γ < 1, which Carroll (2009) calls

the “finite value condition” and implies (2.11), is often required for the existence
of a solution in dynamic programming problems with homothetic preferences.8

The following proposition explains why this condition has often been assumed
in the literature.

Proposition 2.3. Suppose Assumption 1’ holds. Then the optimal consumption-
saving problem (2.1) with zero income (Y ≡ 0) has a solution (with finite life-
time utility) if and only if the finite value condition (2.11) holds. Under this
condition, the optimal consumption function is

c(a, z) = x∗(z)−1/γa, (2.12)

where x∗ ∈ RZ+ is the unique finite solution to (2.8).

Proof. The case γ 6= 1 follows from Proposition 1 of Toda (2019). The case
γ = 1 follows from Proposition 10 of Online Appendix C of Toda (2019).9

8See, for example, the discussion on p. 244 of Samuelson (1969), Equation (9) of Krebs
(2006), Equation (3) of Carroll (2009), Equation (18) of Toda (2014), or Equation (3) of Toda
(2019).

9In Toda (2019), the discount factor βt and the return Rt are deterministic functions of the
previous state Zt−1. In our setting, they are functions of the current state Zt as well as iid
shocks as in (2.2). This difference in the timing convention explains the difference in the state-
ments, but the proof is essentially identical and therefore omitted. In fact, we can subsume
both settings as follows. Instead of (2.2), assume βt = β(Zt−1, Zt, εt) and similarly for Rt, Yt.
For a random variable Xt, define the matrix MX by MX(z, ẑ) = E [Xt |Zt−1 = z, Zt = ẑ].
Then using P �MX instead of PDX for X = β, βR, βR1−γ (where � denotes the Hadamard
(element-wise) product), we can analyze the problem in a unified way.
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Proposition 2.3 implies that for a solution to the income fluctuation problem
(2.1) to exist, the finite value condition (2.11) may be violated only if income
Y can be positive. In fact, the Inada condition u′(0) = ∞ in Assumption 1
and the condition Ez u

′(Y ) < ∞ in Assumption 2 imply that Y > 0 almost
surely. Contrary to the intuition from the zero-income model, Ma, Stachurski,
and Toda (2020, Theorem 2.2) show that Assumptions 1 and 2 are sufficient
for the existence of a solution to general income fluctuation problems, and no
conditions on risk aversion (including the finite value condition) are necessary.

A natural question is whether the case r(PD) ≥ 1 (and hence zero asymp-
totic MPCs) is empirically plausible, or even theoretically possible. We argue
in Section 3 that r(PD) ≥ 1 is empirically plausible. The following proposition
shows that γ > 1 is necessary for zero asymptotic MPCs.

Proposition 2.4. If Assumption 2 holds and γ ≤ 1, then r(PDβR1−γ ) < 1.

Example 2.3 below (with iid lognormal returns) shows that zero asymptotic
MPCs are possible for any γ > 1.

As discussed above, Theorem 2.2 does not cover all possible cases, as Ez βR
1−γ

could be infinite or the matrix PD need not be irreducible in particular appli-
cations. We can generalize Theorem 2.2 to cover all possible cases at the cost
of making the notation slightly more complicated. To this end, let K = PD
be as in Theorem 2.2, where the diagonal element D(z, z) = Ez βR

1−γ could
be infinite. By relabeling the states z = 1, . . . , Z if necessary, without loss of
generality we may assume that K is block upper triangular,

K =

K1 · · · ∗
...

. . .
...

0 · · · KJ

 , (2.13)

where each diagonal block Kj is irreducible.10 Partition Z as Z = Z1 ∪ · · · ∪ ZJ
accordingly. Then we have the following complete characterization.

Theorem 2.5 (Complete characterization). Suppose Assumption 2 holds and
the utility function exhibits constant relative risk aversion γ > 0. Express K =
PD as in (2.13). Define the sequence {xn}∞n=0 ∈ [0,∞]Z by x0 = 1 and xn =
Fxn−1, where F is as in (2.8) and we apply the convention 0 · ∞ = 0. Then
{xn} monotonically converges to x∗ ∈ [1,∞]Z , and the limit (2.7) holds with
c̄(z) = x∗(z)−1/γ ∈ [0, 1].

Furthermore, c̄(z) = 0 if and only if there exist j, ẑ ∈ Zj, and m ∈ N such
that Km(z, ẑ) > 0 and r(Kj) ≥ 1, where r(Kj) = ∞ if some element of Kj is
infinite.

An interesting implication of Theorems 2.2 and 2.5 is that the asymptotic
MPCs c̄(z) depend only on the matrix PD, which in turn depends only on rela-
tive risk aversion γ as well as “multiplicative shocks” β and R, and not on “addi-
tive shocks” Y . The following corollary verifies the intuition in Gouin-Bonenfant
and Toda (2018) that only multiplicative shocks matter for characterizing the
behavior of wealthy agents.

10Recall that a square matrix A is reducible if there exists a permutation matrix P such
that P>AP is block upper triangular with at least two diagonal blocks. Matrices that are
not reducible are called irreducible. Hence by induction a decomposition of the form (2.13) is
always possible. By definition scalars (1× 1 matrices, including zero) are irreducible, so some
Kj in (2.13) can be zero if it is 1× 1.
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Corollary 2.6 (Irrelevance of additive shocks). Let everything be as in Theo-
rem 2.5. The asymptotic MPCs c̄(z) depend only on the relative risk aversion γ,
transition probability matrix P , the discount factor β, and the return on wealth
R, and not on income Y .

2.3 Examples

The system of fixed point equations (2.8) is in general nonlinear and does not
admit a closed-form solution. Below, we discuss several examples with explicit
solutions.

Example 2.1. If γ = 1, then (2.8) becomes

x∗ = 1 + PDx∗ ⇐⇒ x∗ = (I − PD)−11,

where D = Dβ = diag(. . . ,Ez β, . . . ).
11 A corollary is that with log utility, we

always have c̄(z) > 0.

Example 2.2. If b = b(z) = Ez βR
1−γ does not depend on z, then D = bI. If

x = k1 is a multiple of the vector 1, then PDx = bPk1 = bk1 because P is a
transition probability matrix. Thus if b < 1, (2.8) reduces to

x∗(z) = (1 + (bx∗(z))1/γ)γ ⇐⇒ x∗(z) = (1− b1/γ)−γ ⇐⇒ c̄(z) = 1− b1/γ .

This example shows that with constant discounting (β(z, ε) ≡ β) and risk-free
saving (R(z, ζ) ≡ R), the asymptotic MPC is constant regardless of the income
shocks:

c̄(z) =

{
1− (βR1−γ)1/γ if βR1−γ < 1,

0 otherwise.

Example 2.3. Suppose the return on wealth Rt = R(Zt, ζt) does not depend
on Zt, so Rt = R(ζt). Assume further that logRt is normally distributed with
standard deviation σ and mean µ− σ2/2, so ER = eµ. Let the discount factor
β = e−δ be constant, where δ > 0 is the discount rate. Then using the property
of the normal distribution, we obtain

1 > EβR = e−δ+µ ⇐⇒ δ > µ,

1 > EβR1−γ = e−δ+(1−γ)(µ−γσ2/2) ⇐⇒ δ > (1− γ)

(
µ− 1

2
γσ2

)
.

Therefore assuming δ > µ for Assumption 2 to hold, it follows from Example
2.2 that

c̄(z) =

{
1− e−ψδ−(1−ψ)(µ−γσ

2/2) > 0 if δ > (1− γ)
(
µ− 1

2γσ
2
)
,

0 otherwise,

where ψ = 1/γ is the elasticity of intertemporal substitution. If γ > 1, then
(1 − γ)(µ − γσ2/2) → ∞ as γ, σ → ∞, so the asymptotic MPC is 0 if risk
aversion or volatility is sufficiently high.

11Note that since r(PD) = r(PDβ) < 1 by Assumption 2, (I − PD)−1 =
∑∞
k=0(PD)k

exists and is nonnegative.
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3 Asymptotic MPCs and saving rates

In this section we apply our theory of asymptotic MPCs to shed light on the
saving rate of the rich.

3.1 General theory

We define an agent’s saving rate by the change in net worth divided by to-
tal income excluding capital loss (to prevent the denominator from becoming
negative):

st+1 =
at+1 − at

max {(Rt+1 − 1)(at − ct), 0}+ Yt+1
. (3.1)

For x ∈ R, define its positive and negative parts by x+ = max {x, 0} and
x− = −min {x, 0}. Then x = x+ − x−. Using the budget constraint (2.1a), the
saving rate (3.1) can be rewritten as

st+1 =
[(Rt+1 − 1)+ − (Rt+1 − 1)−](at − ct) + Yt+1 − ct

(Rt+1 − 1)+(at − ct) + Yt+1

= 1− (R̂− 1)−(1− c/a) + c/a

(R̂− 1)+(1− c/a) + Ŷ /a
∈ (−∞, 1). (3.2)

Letting a→∞, the saving rate of an infinitely wealthy agent becomes

s̄ := 1− (R̂− 1)−(1− c̄) + c̄

(R̂− 1)+(1− c̄)
∈ [−∞, 1], (3.3)

where c̄ is the asymptotic MPC. Under what conditions can the saving rate (3.2)
be increasing in wealth, and in particular, can the asymptotic saving rate (3.3)
become positive? The following proposition provides a negative answer within
a class of models.

Proposition 3.1. Consider a canonical Bewley (1977) model in which agents
are infinitely-lived and relative risk aversion γ, discount factor β, and return on
wealth R > 1 are constant. Then in the stationary equilibrium the asymptotic
saving rate (3.3) is negative.

Proof. Stachurski and Toda (2019) show that it must be βR < 1 in the station-
ary equilibrium. Since R > 1 by assumption, we obtain βR1−γ = (βR)R−γ < 1.
By Example 2.2, the asymptotic MPC is c̄ = 1− (βR1−γ)1/γ ∈ (0, 1). Therefore
using (3.3), we obtain

s̄ = 1− c̄

(R− 1)(1− c̄)
< 0 ⇐⇒ (R− 1)(1− c̄) < c̄

⇐⇒ (R− 1)(βR1−γ)1/γ < 1− (βR1−γ)1/γ

⇐⇒ (βR)1/γ < 1,

which holds because βR < 1.

Proposition 3.1 proves that the negativity of the asymptotic saving rate is
inevitable in any canonical Bewley model.12 Thus, these models are unable to

12This result has a similar flavor to Stachurski and Toda (2019), who prove that canonical
Bewley models cannot explain the tail behavior of wealth.
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explain the observed positive saving rates of the rich. The following proposition
shows that just by allowing β or R to be stochastic need not solve the problem
when c̄ > 0.

Proposition 3.2. Consider a Bewley (1977) model in which agents are infinitely-
lived, relative risk aversion γ is constant, and {βt, Rt}t≥1 is iid with ER > 1

and EβR1−γ < 1. If the stationary equilibrium wealth distribution has an un-
bounded support, then the asymptotic saving rate (3.3) evaluated at R̂ = ER is
nonpositive.

Proof. Since by assumption EβR1−γ < 1, by Example 2.2 the asymptotic MPC
is c̄ = 1 − (EβR1−γ)1/γ ∈ (0, 1). Therefore using (3.3), the asymptotic saving
rate evaluated at ER > 1 is

s̄ = 1− c̄

(ER− 1)(1− c̄)
≤ 0 ⇐⇒ (ER− 1)(1− c̄) ≤ c̄

⇐⇒ ER(1− c̄) ≤ 1.

Since ER(1 − c̄) is the expected growth rate of wealth for infinitely wealthy
agents, if the wealth distribution is unbounded and ER(1− c̄) > 1, then wealth
will grow at the top, which violates stationarity. Therefore in a stationary
equilibrium, it must be s̄ ≤ 0.

One possible explanation for the positive and increasing saving rates is to
consider models with discount factor or return heterogeneity. If r(PDβR1−γ ) ≥
1, then by Theorem 2.2 we have c̄ = 0 and hence the asymptotic saving rate
becomes s̄ = 1 > 0 using (3.3).13

3.2 Numerical example

To show the theoretical possibility of positive and increasing saving rates, we
consider a numerical example calibrated from U.S. data. We present a minimal
model to illustrate our theory, and a detailed comparison to the data is beyond
the scope of the paper.

The agent has constant discount factor β and relative risk aversion γ > 0. We
suppose that wealthy agents invest their wealth into stocks, private businesses,
and a risk-free asset in constant proportions subject to a capital income tax.14

Let Rst , R
b
t be the gross returns on stock and business between time t− 1 and t,

and let Rf be the gross risk-free rate. The stock return process {Rst} exhibits
constant expected return ERst = eµ with GARCH(1, 1) innovations:

logRst = µ− 1

2
σ2
t + εt, (3.4a)

εt = σtζt, ζt ∼ iidN(0, 1) (3.4b)

σ2
t = ω + αε2t−1 + ρσ2

t−1, (3.4c)

13Another possibility is to consider overlapping generations models. Stachurski and Toda
(2019, Theorem 9) present a model with random birth/death and show that it is possible to
have βR > 1 in equilibrium. In this case, by the proof of Proposition 3.1, we have s̄ > 0.

14Since our focus is the individual optimization problem (2.1), the distinction between stocks
(which are subject to only aggregate shocks) and private businesses (which are subject to both
aggregate and idiosyncratic shocks) is unimportant. We include both assets only to reflect
the evidence on individual portfolio cited below.
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where σt > 0 is conditional volatility, εt is a zero mean innovation, and we
assume ω, α, ρ > 0 and α + ρ < 1 to ensure stationarity. We model business
returns parsimoniously and set

Rbt =

{
1

1−pbR
s
t with probability 1− pb,

0 with probability pb,

so that private businesses go bankrupt with probability pb but otherwise business
returns are perfectly correlated with the stock return with identical mean.15

Letting τ be the capital income tax rate, the after-tax gross portfolio return is

Rt(θ) := 1 + (1− τ)(θsRst + θbRbt + θfRf − 1), (3.5)

where θ = (θs, θb, θf ) is the portfolio with θs + θb + θf = 1.
To calibrate the stock return parameters, we use the 1947–2018 monthly data

for U.S. stock market returns (volume-weighted index including dividends) and
risk-free rates from the updated spreadsheet of Welch and Goyal (2008).16 Their
spreadsheet contains monthly nominal stock and risk-free returns as well as the
inflation. From these we construct the real gross stock and risk-free returns
Rst , R

f
t , define the residual ε̂t in (3.4a) by demeaning the log excess returns

logRst − logRft , and estimate the GARCH parameters ω = 9.1297 × 10−5,
α = 0.8354, and ρ = 0.1188. We estimate the log risk-free rate as logRf =

E[logRft ] = 5.3477 × 10−4 (annual rate 0.65%). We estimate the log expected
return as µ = log(ERst ) = 6.8011×10−3 (annual rate 8.19%). Because our model
requires a finite state Markov chain, we discretize the GARCH(1, 1) process
(3.4) using the Farmer and Toda (2017) method as described in Appendix A
with Nv = 3 points for the volatility state and Nε = 15 for the return state.

To calibrate the portfolio shares θ = (θs, θb, θf ), we use the 1913–2012 wealth
share data of the wealthiest households in U.S. estimated by Saez and Zucman
(2016). Specifically, in Table B5b of their Online Appendix, they report the
composition of wealth of the top 0.01% across asset groups (equities, fixed in-
come claims, housing, business assets, and pensions). We classify equities and
pension as “stock”, business assets as “business”, and fixed income claims and
housing as “risk-free asset” to compute the portfolio share θ for all years,17 take
the average across all years, and obtain (θs, θb, θf ) = (0.5546, 0.0827, 0.3627).

We calibrate the remaining parameters as follows. The discount factor is
β = e−0.05/12 so that the annual discounting is 5%. The bankruptcy probability
is pb = 1 − e−0.025/12 so that the annual exit rate is 2.5% as documented in
Luttmer (2010) for firms with more than 500 employees. The capital income
tax rate is τ = 0.25 based on the estimate in McDaniel (2007) using national
account statistics.

To solve the income fluctuation problem (2.1), we need to specify the income
process. Because the U.S. economy has been growing, and by Corollary 2.6

15Since business returns are modeled as a mean-preserving spread of stock returns, risk
averse and unconstrained agents would never hold business assets. Here we suppose that
wealthy agents hold business assets for other reasons, for example retaining voting rights in
shareholder meetings.

16http://www.hec.unil.ch/agoyal/docs/PredictorData2018.xlsx.
17These portfolio shares are relatively stable over time. Although the classification of hous-

ing and pension may be ambiguous, because these two categories comprise a small fraction
(about 10%) of the portfolio, choosing different classifications give quantitatively similar re-
sults.
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the details on the income process is irrelevant for the asymptotic MPCs, for
simplicity we assume that income grows at a constant rate g, so Yt = egt. We
calibrate the growth rate g from the U.S. real per capita GDP in 1947–2018 and
obtain g = 1.6208 × 10−3 at the monthly frequency. Although the theory in
Ma, Stachurski, and Toda (2020) requires a stationary process for income, it is
straightforward to allow for constant growth in income by detrending the model
when the utility function is CRRA. After simple algebra, it suffices to use

R̃t(θ) = Rt(θ)e
−g,

β̃ = βe(1−γ)g,

Ỹt = Yte
−gt = 1.

In the current setting, Assumption 1’ and conditions 1 and 3 of Assumption 2
obviously hold. To apply Theorems 2.1 and 2.2, it remains to verify r(PDβR) <
1 and determined whether r(PD) ≷ 1, where D = DβR1−γ . Figure 1 shows the
determination of the asymptotic MPC c̄(z) when we change the relative risk
aversion γ and the annual discount rate δ. We see that the asymptotic MPCs
can be zero if relative risk aversion is moderately high (above 4–5).
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Figure 1: Determination of asymptotic MPCs with GARCH(1, 1) returns.

Is the possibility of zero asymptotic MPC empirically plausible? To address
this concern, we do a simple calculation similar to Friend and Blume (1975).
Although our paper abstracts from portfolio choice, suppose that wealthy agents
choose the portfolio θs, θf (fixing θb) by maximizing the certainty equivalent of

return E[R(θ)1−γ ]
1

1−γ , where R(θ) is the gross portfolio return in (3.5) and the
expectation is taken over the ergodic distribution of asset returns. The first-
order condition of this optimization problem is

E[R(θ)−γ(Rs −Rf )] = 0. (3.6)

Using our discretized asset returns and the portfolio share θ, the relative risk
aversion that makes (3.6) hold is γ = 6.38. According to Figure 1, this level of
risk aversion makes the asymptotic MPC c̄(z) equal to zero for any reasonable
discount rates.

We next solve the model for γ = 3, 5 using policy function iteration. Accord-
ing to Figure 1 and Theorem 2.1, a unique solution exists in each case given the
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calibrated discount factor. Figure 2 shows the optimal consumption rule. Con-
sistent with our theory, for γ = 3 the consumption functions are approximately
linear with positive slopes for high asset level. When γ = 5, the consumption
functions show a more concave pattern.
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Figure 2: Optimal consumption rule.

Note: The top and bottom panels plot the consumption functions in the range a ∈ [0, 100]
and a ∈ [0, 1010], respectively. Here and in other figures, the left (right) panels correspond to
γ = 3 (γ = 5). For visibility, we plot across asset and the three volatility states σ2

l < σ2
m < σ2

h
holding ε = 0 constant.

Figure 3 plots the consumption rates (solid lines) in log-log scale. We see that
the consumption rates are decreasing in wealth for each realized volatility. For
γ = 3, as asset level gets large, the asymptotic MPCs approach to positive con-
stants that coincide with the theoretical values calculated based on Theorem 2.2
(dotted lines), indicating that the consumption functions are asymptotically lin-
ear, consistent with the theorem. For γ = 5, the consumption rates exhibit a
clear decreasing trend even when asset is extremely large (a ≈ 1010), which is
consistent with zero asymptotic MPC established in Theorem 2.2.

Finally, Figure 4 shows the saving rates assuming σ2
t = σ2

t+1 ∈
{
σ2
l , σ

2
m, σ

2
h

}
and ε = 0. When wealth is low, the borrowing constraint binds and labor in-
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Figure 3: Consumption rate.

come is the only source of income and net worth accumulation, i.e., st+1 =
(Yt+1 − a)/Yt+1 = 1− e−ga, which is decreasing in asset. A moderately greater
wealth implies lower saving rates because capital income is used to finance dis-
proportionately large consumption. The saving rate starts to increase when
wealth is relatively high (≈ 100). Importantly, when γ = 5 and σ2 ∈

{
σ2
l , σ

2
m

}
,

the saving rate is increasing in wealth among agents with large asset and the
asymptotic saving rate equals 1,18 as opposed to the increasing but either nega-
tive or small positive saving rate when γ = 3. This example illustrates that the
empirically observed large positive and increasing saving rate could potentially
be explained by models with capital income risk, particularly those with zero
asymptotic MPCs.
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Figure 4: Saving rate.

4 Proofs

The proof of Theorem 2.2 is technical and consists of the following steps:

18When σ2 = σ2
h, the saving rate becomes negative because R̂ < 1 when ε = 0; see (3.2).
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1. show that policy function iteration leads to increasingly tighter upper
bounds on consumption functions that are asymptotically linear with ex-
plicit slopes,

2. show that the slopes of the upper bounds converge using the fixed point
theory of monotone convex maps, and

3. show that the consumption functions have linear lower bounds with iden-
tical slopes to the limit of upper bounds, implying asymptotic linearity.

Let C be the space of candidate consumption functions and T : C → C be
the time iteration operator as defined in Section 2. The following proposition
allows us to asymptotically bound the consumption rate c(a, z)/a from above.

Proposition 4.1. Let everything be as in Theorem 2.2. If c ∈ C and

lim sup
a→∞

c(a, z)

a
≤ x(z)−1/γ

for some x(z) ≥ 1 for all z ∈ Z, then

lim sup
a→∞

Tc(a, z)

a
≤ (Fx)(z)−1/γ . (4.1)

Proof. Let α = lim supa→∞ Tc(a, z)/a. By definition, we can take an increasing
sequence {an} such that α = limn→∞ Tc(an, z)/an. Define αn = Tc(an, z)/an ∈
(0, 1] and

λn =
c(R̂(1− αn)an + Ŷ , Ẑ)

an
> 0. (4.2)

Let us show that
lim sup
n→∞

λn ≤ x(Ẑ)−1/γR̂(1− α). (4.3)

To see this, if α < 1 and R̂ > 0, then since R̂(1− αn)an → R̂(1− α) · ∞ =∞,
by assumption we have

lim sup
n→∞

λn = lim sup
n→∞

c(R̂(1− αn)an + Ŷ , Ẑ)

R̂(1− αn)an + Ŷ

(
R̂(1− αn) +

Ŷ

an

)

≤ lim sup
a→∞

c(a, Ẑ)

a
× R̂(1− α)

≤ x(Ẑ)−1/γR̂(1− α),

which is (4.3). If α = 1 or R̂ = 0, then since c(a, z) ≤ a, we have

λn =
c(R̂(1− αn)an + Ŷ , Ẑ)

R̂(1− αn)an + Ŷ

(
R̂(1− αn) +

Ŷ

an

)

≤ R̂(1− αn) +
Ŷ

an
→ R̂(1− α) = 0,

so again (4.3) holds.
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Since ξn := Tc(an, z) = αnan solves the Euler equation, using u′(c) = c−γ

and the definition of λn in (4.2), we have

0 =
u′(αnan)

u′(an)
−max

{
Ez β̂R̂

u′(c(R̂(1− αn)an + Ŷ , Ẑ))

u′(an)
, 1

}
= α−γn −max

{
Ez β̂R̂(c(R̂(1− αn)an + Ŷ , Ẑ)/an)−γ , 1

}
= α−γn −max

{
Ez β̂R̂λ

−γ
n , 1

}
=⇒ α−γn = max

{
Ez β̂R̂λ

−γ
n , 1

}
≥ Ez β̂R̂λ

−γ
n . (4.4)

Now letting n→∞ in (4.4) and applying Fatou’s lemma, we obtain

α−γ = lim
n→∞

α−γn ≥ lim inf
n→∞

Ez β̂R̂λ
−γ
n

≥ Ez lim inf
n→∞

β̂R̂λ−γn

= Ez β̂R̂

[
lim sup
n→∞

λn

]−γ
≥ Ez β̂R̂

[
x(Ẑ)−1/γR̂(1− α)

]−γ
by (4.3). Solving the inequality for α and using the convention βR1−γ =
(βR)R−γ and 0 · ∞ = 0 (see Footnote 7), we obtain

lim sup
a→∞

Tc(a, z)

a
= α ≤ 1

1 +
(

Ez β̂R̂1−γx(Ẑ)
)1/γ = (Fx)(z)−1/γ .

Starting from the trivial upper bound c(a, z) ≤ a and applying Proposi-
tion 4.1 repeatedly we obtain increasingly tighter upper bounds of c(a, z). The
following proposition characterizes the limits of the slopes of the upper bounds.

Proposition 4.2. Let everything be as in Theorem 2.2. Then F in (2.8) has
a fixed point x∗ ∈ RZ+ if and only if r(PD) < 1, in which case the fixed point is
unique. Take any x0 ∈ RZ+ and define the sequence {xn}∞n=1 ⊂ RZ+ by

xn = Fxn−1 (4.5)

for all n ∈ N. Then the followings are true.

1. If r(PD) < 1, then {xn}∞n=1 converges to x∗.

2. If r(PD) ≥ 1 and PD is irreducible, then xn(z)→ x∗(z) =∞ as n→∞
for all z ∈ Z.

Proof. Immediate from Lemmas 4.3 and 4.4 below.

Lemma 4.3. Let γ > 0 and define φ : R+ → R+ by φ(t) = (1 + t1/γ)γ . Then
there exist a ≥ 1 and b ≥ 0 such that φ(t) ≤ at + b. Furthermore, we can take
a ≥ 1 arbitrarily close to 1. (The choice of b may depend on a.)

Proof. The proof depends on γ ≷ 1.
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Case 1: γ ≤ 1. Let us show that we can take a = b = 1. Let f(t) = 1+t−φ(t).
Then f(0) = 0 and

f ′(t) = 1− φ′(t) = 1− γ(1 + t1/γ)γ−1
1

γ
t1/γ−1 = 1− (t−1/γ + 1)γ−1 ≥ 0,

so f(t) ≥ 0 for all t ≥ 0. Therefore φ(t) ≤ 1 + t.

Case 2: γ > 1. By simple algebra we obtain

φ′′(t) = (γ − 1)(t−1/γ + 1)γ−2
(
− 1

γ
t−1/γ−1

)
< 0, (4.6)

so φ is increasing and concave. Therefore φ(t) ≤ φ(u) + φ′(u)(t− u) for all t, u.
Letting a = φ′(u) and b = max {0, φ(u)− φ′(u)u}, we obtain φ(t) ≤ at + b.
Furthermore, since φ′(t) = (t−1/γ + 1)γ−1 → 1 as t→∞, we can take a = φ′(u)
arbitrarily close to 1 by taking u large enough.

Lemma 4.4. Let γ > 0 and K be a Z × Z nonnegative matrix. Define F :
RZ+ → RZ+ by Fx = φ(Kx), where φ is as in Lemma 4.3 and is applied element-
wise. Then F has a fixed point x∗ ∈ RZ+ if and only if r(K) < 1, in which case
x∗ is unique.

Take any x0 ∈ RZ+ and define the sequence {xn}∞n=1 ⊂ RZ+ by xn = Fxn−1
for all n ∈ N. Then the followings are true.

1. If r(K) < 1, then {xn}∞n=1 converges to x∗.

2. If r(K) ≥ 1 and K is irreducible, then xn(z)→ x∗(z) =∞ as n→∞ for
all z ∈ Z.

Proof. We divide the proof into several steps.

Step 1. If r(K) ≥ 1, then F does not have a fixed point. If in addition K is
irreducible, then xn(z)→∞ for all z ∈ Z.

We prove the contrapositive. Suppose that F has a fixed point x∗ ∈ RZ+.
Since φ > 0, we have x∗ � 0. Since clearly φ(t) > t for all t ≥ 0, we have
x∗ = φ(Kx∗)� Kx∗. SinceK is a nonnegative matrix, by the Perron-Frobenius
theorem, we can take a right eigenvector y > 0 such that y′K = r(K)y′. Since
x∗ � Kx∗ and y > 0, we obtain

0 < y′(x∗ −Kx∗) =⇒ r(K)y′x∗ < y′x∗.

Dividing both sides by y′x∗ > 0, we obtain r(K) < 1.
Suppose that r(K) ≥ 1 and K is irreducible. Since K is nonnegative and φ is

strictly increasing, F = φ◦K is a monotone map. Therefore to show xn(z)→∞,
it suffices to show this when x0 = 0. Since x1 = Fx0 = F0 = 1 ≥ 0, applying
Fn−1 we obtain xn ≥ xn−1 for all n. Since {xn}∞n=0 is an increasing sequence
in RZ+, if it is bounded, then it converges to some x∗ ∈ RZ+. By continuity, x∗ is
a fixed point of F , which is a contradiction. Therefore {xn}∞n=0 is unbounded,
so xn(ẑ)→∞ for at least one ẑ ∈ Z. Since by assumption K is irreducible, for
each (z, ẑ) ∈ Z2, there exists m ∈ N such that Km(z, ẑ) > 0. Therefore

xm+n(z) ≥ Km(z, ẑ)xn(ẑ)→∞

as n→∞, so xn(z)→∞ for all z ∈ Z.
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Step 2. If r(K) < 1, then F has a unique fixed point x∗ in RZ+. If we take
a ∈ [1, 1/r(K)) and b > 0 as in Lemma 4.3, then

1 ≤ x∗ � (I − aK)−1b1. (4.7)

Take any fixed point x∗ ∈ RZ+ of F . Since φ(t) ≥ 1 for all t ≥ 0, clearly
x∗ ≥ 1. Since K is nonnegative and ar(K) < 1, the inverse (I − aK)−1 =∑∞
k=0(aK)k exists and is nonnegative. Therefore

x∗ = Fx∗ � aKx∗ + b1 =⇒ x∗ � (I − aK)−1b1,

which is (4.7).
The proof of existence and uniqueness uses a similar strategy to Borovička

and Stachurski (2020). Clearly F is a monotone map. Using (4.6), it follows
that F is convex if γ ≤ 1 and concave if γ ≥ 1. Define u0 = 0 and v0 = (I −
aK)−1b1� 0. Then Fu0 = 1� 0 = u0 and Fv0 = φ(Kv0)� aKv0 + b1 = v0.
Hence by Theorem 2.1.2 of Zhang (2013), which is based on Theorem 3.1 of Du
(1990), F has a unique fixed point in [u0, v0] = [0, v0]. Since by (4.7) any fixed
point x∗ must lie in this interval, it follows that F has a unique fixed point in
RZ+.

Step 3. If r(K) < 1, then {xn}∞n=1 converges to x∗.

Let a ∈ [1, 1/r(K)), b > 0, and v0 � 0 be as in the previous step. Since
Fx = φ(Kx), we obtain

xn = Fxn−1 = φ(Kxn−1)� aKxn−1 + b1.

Iterating, we obtain

xn � (aK)nx0 +

n−1∑
k=0

(aK)k(b1)

= (aK)nx0 +

∞∑
k=0

(aK)k(b1)−
∞∑
k=n

(aK)k(b1)

= (aK)n(x0 − v0) + v0.

Since r(aK) = ar(K) < 1, we have (aK)n(x0 − v0) → 0 as n → ∞. Therefore
0 = u0 � xn � v0 for large enough n. Again by Theorem 2.1.2 of Zhang (2013),
we have xn → x∗ as n→∞.

The following proposition allows us to obtain explicit linear lower bounds on
consumption functions.

Proposition 4.5. Let everything be as in Theorem 2.2. Suppose r(PD) < 1
and let x∗ ∈ RZ++ be the unique fixed point of F in (2.8). Restrict the candidate
space to

C0 = {c ∈ C | c(a, z) ≥ ε(z)a for all a > 0 and z ∈ Z} , (4.8)

where ε(z) = x∗(z)−1/γ ∈ (0, 1]. Then TC0 ⊂ C0.
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Proof. Suppose to the contrary that TC0 6⊂ C0. Then there exists c ∈ C0 such
that for some a > 0 and z ∈ Z, we have ξ := Tc(a, z) < ε(z)a.

Since u′ is strictly decreasing and ε(z) ∈ (0, 1], it follows from (2.4) that

u′(a) ≤ u′(ε(z)a) < u′(ξ) = max
{

Ez β̂R̂u
′(c(R̂(a− ξ) + Ŷ , Ẑ)), u′(a)

}
.

Therefore it must be u′(a) < Ez β̂R̂u
′(c(R̂(a − ξ) + Ŷ , Ẑ)). Since u′ is strictly

decreasing and c ∈ C0, we obtain

u′(ε(z)a) < u′(ξ) = Ez β̂R̂u
′(c(R̂(a− ξ) + Ŷ , Ẑ))

≤ Ez β̂R̂u
′(ε(Ẑ)(R̂(a− ξ) + Ŷ ))

≤ Ez β̂R̂u
′(ε(Ẑ)R̂[1− ε(z)]a).

Using u′(c) = c−γ and ε(z) = x∗(z)−1/γ , we obtain

x∗(z) < Ez β̂R̂
1−γx∗(Ẑ)[1− x∗(z)−1/γ ]−γ

⇐⇒ x∗(z) <
(

1 + (Ez β̂R̂
1−γx∗(Ẑ))1/γ

)γ
=
(

1 + (PDx∗)(z)1/γ
)γ
,

which is a contradiction because x∗ is a fixed point of F in (2.8).

With all the above preparations, we can prove Theorem 2.2.

Proof of Theoreom 2.2. Define the sequence {cn} ⊂ C by c0(a, z) = a and cn =
Tcn−1 for all n ≥ 1. Since Tc(a, z) ≤ a for any c ∈ C, in particular c1(a, z) =
Tc0(a, z) ≤ a = c0(a, z). Since T : C → C is order preserving by Lemma B.4
of Ma, Stachurski, and Toda (2020), by induction 0 ≤ cn ≤ cn−1 for all n and
c(a, z) = limn→∞ cn(a, z) exists. Then by Theorem 2.2 of Ma, Stachurski, and
Toda (2020), this c is the unique fixed point of T and also the unique solution
to the income fluctuation problem (2.1).

Define the sequence {xn} ⊂ RZ++ by x0 = 1 and xn = Fxn−1, where F is

as in (2.8). By definition, we have c0(a, z)/a = 1 = x0(z)−1/γ , so in particular
lim supa→∞ c0(a, z)/a ≤ x0(z)−1/γ for all z ∈ Z. Since cn ↓ c ≥ 0 point-wise, a
repeated application of Proposition 4.1 implies that

0 ≤ lim sup
a→∞

c(a, z)

a
≤ lim sup

a→∞

cn(a, z)

a
≤ xn(z)−1/γ . (4.9)

Case 1: r(PD) ≥ 1 and PD is irreducible. By Proposition 4.2 we have
xn(z)→∞ for all z ∈ Z. Letting n→∞ in (4.9), we obtain

lim
a→∞

c(a, z)

a
= 0.

Case 2: r(PD) < 1. By Proposition 4.2 we have xn(z)→ x∗(z), where x∗ is
the unique fixed point of F in (2.8). Letting n→∞ in (4.9), we obtain

lim sup
a→∞

c(a, z)

a
≤ x∗(z)−1/γ . (4.10)
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On the other hand, a repeated application of Proposition 4.5 implies that
cn(a, z) ≥ x∗(z)−1/γa for all a > 0 and z ∈ Z. Since cn → c point-wise,
letting n→∞, dividing both sides by a > 0, and letting a→∞, we obtain

lim inf
a→∞

c(a, z)

a
≥ x∗(z)−1/γ . (4.11)

Combining (4.10) and (4.11), we obtain lima→∞ c(a, z)/a = c̄(z) = x∗(z)−1/γ .

Proof of Proposition 2.4. If γ = 1, then r(PDβR1−γ ) = r(PDβ) < 1 by condi-
tion 1 of Assumption 2. Suppose γ ∈ (0, 1). For a nonnegative matrix A and
θ > 0, let A(θ) = (A(z, ẑ)θ) be the matrix of θ-th power. Also, let � denote the
Hadamard (element-wise) product. Applying Hölder’s inequality, we obtain

Ez βR
1−γ = Ez β

γ(βR)1−γ ≤ (Ez β)γ(Ez βR)1−γ .

Constructing diagonal matrices, we obtain

DβR1−γ ≤ D(γ)
β �D(1−γ)

βR .

Multiplying P from left and noting that DX is diagonal, it follows that

PDβR1−γ ≤ P (D
(γ)
β �D(1−γ)

βR ) = (PDβ)(γ) � (PDβR)(1−γ).

Applying Theorem 1 of Elsner, Johnson, and Dias da Silva (1988), we obtain

r(PDβR1−γ ) ≤ r(PDβ)γr(PDβR)1−γ < 1

by conditions 1 and 2 of Assumption 2.

The proof of Theorem 2.5 follows from the same idea as Theorem 2.2 by
considering each diagonal block separately.

Proof of Theorem 2.5. Since K is a nonnegative matrix (with elements that are
potentially infinite), the map F in (2.8) is monotone and therefore {xn}∞n=0

monotonically converges to some x∗ ∈ [1,∞]Z . To characterize x∗(z) and c̄(z),
we consider two cases.

Case 1: There exist j, ẑ ∈ Zj, and m ∈ N such that Km(z, ẑ) > 0

and r(Kj) ≥ 1. Define the block diagonal matrix K̃ = diag(K1, . . . ,KJ) and
the sequence {x̃n}∞n=0 ⊂ [0,∞]Z by x̃0 = 1 and iterating (2.8), where K is

replaced by K̃. Since K ≥ K̃ ≥ 0, clearly xn ≥ x̃n ≥ 1 for all n. Since by
definition K̃ is block diagonal with each diagonal block irreducible, by Lemma
4.4 we have x̃n(z)→∞ as n→∞ if and only if there exists j such that z ∈ Zj
and r(Kj) ≥ 1. (Although Lemma 4.4 assumes the elements of K are finite, the
infinite case is similar.) Replacing the vector 1 in (2.8) by 0 and iterating, we
obtain

xm+n ≥ Kmxn ≥ Kmx̃n.

Therefore if there exist j, ẑ ∈ Zj and m ∈ N such that Km(z, ẑ) > 0 and
r(Kj) ≥ 1, then

xm+n(z) ≥ Km(z, ẑ)x̃n(ẑ)→∞
as n→∞, so x∗(z) =∞. In this case we obtain c̄(z) = 0 by the same argument
as in the proof of Proposition 4.1.
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Case 2: For all j, either r(Kj) < 1 or Km(z, ẑ) = 0 for all ẑ ∈ Zj

and m ∈ N. For any ẑ such that Km(z, ẑ) = 0 for all m, by (2.8) the value of
xn(z) is unaffected by all previous xk(ẑ) for k < n. Therefore for the purpose
of computing xn(z), we may drop all rows and columns of K corresponding to
such ẑ. The resulting matrix has block diagonal elements Kj with r(Kj) < 1
only, so this matrix has spectral radius less than 1. Therefore by Lemma 4.4,
we have xn(z)→ x∗(z) <∞ as n→∞. In this case we obtain c̄(z) = x∗(z)−1/γ

by the same argument as in the proof of Theorem 2.2.
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A Discretizing the GARCH(1, 1) process

In this appendix we explain how to discretize the GARCH(1, 1) process (3.4).

A.1 Constructing the grid

Let vt = σ2
t . Using the properties of the GARCH process, it is known that the

expected conditional variance is

E[vt] =
ω

1− α− ρ
.

Therefore it is natural to take an evenly-spaced grid {ε̄n}Nεn=1, where Nε is an

odd number and the largest grid point ε̄ := ε̄Nε is some multiple of
√

ω
1−α−ρ .

Because the conditional variance of the GARCH process can be quite large, it
is also natural to choose an exponential grid (as discussed in Appendix A.3)

{v̄n}Nvn=1 such that the median point of the grid is ω
1−α−ρ .

To determine the end points, let v
¯

= v1 and v̄ = vNv . In principle vt = σ2
t

can be arbitrarily close to ω, so we set v
¯

= ω. For vt = σ2
t to remain in the grid

when εt−1 and σ2
t−1 are at their maximum value, we need

v̄ ≥ ω + αε̄2 + ρv̄ ⇐⇒ v̄ ≥ ω + αε̄2

1− ρ
.

Setting ε̄ = k
√

ω
1−α−ρ for some k > 0, we obtain

v̄ ≥ 1− ρ+ (k2 − 1)α

1− ρ
ω

1− α− ρ
. (A.1)
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In order to be able to match up to the second moments of εt when vt = v̄, it is
necessary and sufficient that

ε̄ ≥
√
v̄ ⇐⇒ v̄ ≤ ε̄2 =

k2ω

1− α− ρ
. (A.2)

We have the following result.

Proposition A.1. Consider the GARCH(1, 1) process (3.4) with α+ρ < 1 and
set vt = σ2

t . Let Nε ≥ 3 be an odd number and Nv ≥ 2. Then there exists a
discretization such that

1. {ε̄n}Nεn=1 is evenly spaced and centered around 0,

2. {v̄n}Nvn=1 is exponentially spaced with minimum point ω and median point
ω

1−α−ρ , and

3. the conditional mean of vt and the conditional mean and variance of εt
are exact.

Proof. Set ε̄ = ε̄Nε = k
√

ω
1−α−ρ for some k > 0. Combining (A.1) and (A.2),

we obtain

1− ρ+ (k2 − 1)α

1− ρ
ω

1− α− ρ
≤ k2ω

1− α− ρ
⇐⇒ 1− ρ+ (k2 − 1)α ≤ (1− ρ)k2

⇐⇒ (k2 − 1)(α+ ρ− 1) ≤ 0,

which always holds if k ≥ 1 because α+ ρ < 1. Set

(v
¯
, v̄) =

(
ω,

1− ρ+ (k2 − 1)α

1− ρ
ω

1− α− ρ

)
for some k ≥ 1 and construct an exponential grid {vn}Nvn=1 on [v

¯
, v̄] with median

point ω
1−α−ρ as explained in Appendix A.3. For the exponential grid to be

well-defined, we need

ω

1− α− ρ
<
v
¯

+ v̄

2
=

1

2

(
ω +

1− ρ+ (k2 − 1)α

1− ρ
ω

1− α− ρ

)
⇐⇒ 2 < 1− α− ρ+

1− ρ+ (k2 − 1)α

1− ρ
⇐⇒ (1− ρ)(1 + α+ ρ) < 1− ρ+ (k2 − 1)α

⇐⇒ (1− ρ)(α+ ρ) < (k2 − 1)α, (A.3)

which holds for large enough k ≥ 1 because α > 0. To make (A.3) true, for
example we can set

k2 − 1 = Nε(1− ρ)(1 + ρ/α) ⇐⇒ k =
√

1 +Nε(1− ρ)(1 + ρ/α),

which satisfies k ≥ 1.19 In this case we have

v̄ = (1 +Nε(α+ ρ))
ω

1− α− ρ
.

19Setting k ∼
√
Nε is advocated in Farmer and Toda (2017) based on the trapezoidal rule

for quadrature.
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Applying Proposition A.1 and its proof, we can construct the grid {v̄n}Nvn=1

and {ε̄n}Nεn=1 as follows.

Constructing grid for GARCH.

1. Select the number of grid points Nε ≥ 3 and Nv ≥ 2 to discretize the
return and variance states.

2. Set ε̄ =
√

(1 +Nε(1− ρ)(1 + ρ/α)) ω
1−α−ρ and construct the evenly-

spaced grid {ε̄n}Nεn=1 on [−ε̄, ε̄].

3. Set

(a, b, c) =

(
ω, (1 +Nε(α+ ρ))

ω

1− α− ρ
,

ω

1− α− ρ

)
and construct the exponentially-spaced grid {v̄n}Nvn=1 on [a, b] with
median point c as in Appendix A.3.

A.2 Constructing transition probabilities

Having constructed the grid, it remains to construct transition probabilities. Let
Z = {1, . . . , Nv} × {1, . . . , Nε} be the state space. If z = (m,n) ∈ Z, then the
current conditional variance and return are (v, ε) = (v̄m, ε̄n). The next period’s
conditional variance is then

v̂ = ω + αε̄2n + ρv̄m.

This v̂ will in general not be a grid point. However, we can approximate the
transition to v̂ by assigning probabilities 1 − θ, θ to the two points v̄m′ , v̄m′+1

such that
v̂ = (1− θ)v̄m′ + θv̄m′+1,

where m′ is uniquely determined such that v̄m′ < v̂ ≤ v̂m′+1.
Because the distribution of ε̂ is N(0, v̂), we can assign probabilities on the

grid points {ε̄n}Nεn=1 such that the mean and variance are exact. For this purpose,
we can use the maximum entropy method of Tanaka and Toda (2013, 2015) and
Farmer and Toda (2017). If Nε = 3, we can avoid optimizing because there is a
closed-form solution as follows. Assign probabilities p, 1−2p, p to points −ε̄, 0, ε̄
so that E[ε] = 0 and Var[ε] = v̂. For this purpose, we can set

v̂ = 2pε̄2 ⇐⇒ p =
v̂

2ε̄2
,

which is always in (0, 1/2) because v̂ ≤ v̄ < ε̄2.

A.3 Exponential grid

In many models, the state variable may become negative (e.g., asset holdings),
which causes a problem for constructing an exponentially-spaced grid because
we cannot take the logarithm of a negative number. Suppose we would like to
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construct an N -point exponential grid on a given interval (a, b). A natural idea
to deal with such a case is as follows.

Constructing exponential grid.

1. Choose a shift parameter s > −a.

2. Construct an N -point evenly-spaced grid on (log(a+ s), log(b+ s)).

3. Take the exponential.

4. Subtract s.

The remaining question is how to choose the shift parameter s. Suppose we
would like to specify the median grid point as c ∈ (a, b). Since the median of
the evenly-spaced grid on (log(a + s), log(b + s)) is 1

2 (log(a + s) + log(b + s)),
we need to take s > −a such that

c = exp

(
1

2
(log(a+ s) + log(b+ s))

)
− s

⇐⇒ c+ s =
√

(a+ s)(b+ s)

⇐⇒ (c+ s)2 = (a+ s)(b+ s)

⇐⇒ c2 + 2cs+ s2 = ab+ (a+ b)s+ s2

⇐⇒ s =
c2 − ab
a+ b− 2c

.

Note that in this case

s+ a =
c2 − ab
a+ b− 2c

+ a =
(c− a)2

a+ b− 2c
,

so s + a is positive if and only if c < a+b
2 . Therefore, for any c ∈

(
a, a+b2

)
, it

is possible to construct an exponentially-spaced grid with end points (a, b) and
median point c.
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