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Abstract. We analyze the household savings problem in a general setting where

returns on assets, non-financial income and impatience are all state dependent and

fluctuate over time. All three processes can be serially correlated and mutually

dependent. Rewards can be bounded or unbounded and wealth can be arbitrarily

large. Extending classic results from an earlier literature, we determine conditions

under which (a) solutions exist, are unique and are globally computable, (b) the

resulting wealth dynamics are stationary, ergodic and geometrically mixing, and (c)

the wealth distribution has a Pareto tail. We show how these results can be used

to extend recent studies of the wealth distribution. Our conditions have natural

economic interpretations in terms of asymptotic growth rates for discounting and

return on savings.
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1. Introduction

It has been observed that, in the US and several other large economies, the wealth

distribution is heavy tailed and wealth inequality has risen sharply over the last few
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decades.2 This matters not only for its direct impact on taxation and redistribution

policies, but also for potential flow-on effects for productivity growth, business cycles

and fiscal policy, as well as for the political environment that shapes these and other

economic outcomes.3

At present, our understanding of these phenomena is hampered by the fact that

standard tools of analysis—such as those used for heterogeneous agent models—are

not well adapted to studying the wealth distribution as it stands. For example, while

we have sound understanding of the household problem when returns on savings and

rates of time discount are constant (see, e.g., Schechtman (1976), Schechtman and

Escudero (1977), Deaton and Laroque (1992), Carroll (1997), or Açıkgöz (2018)), our

knowledge is far more limited in settings where these values are stochastic. This is

problematic, since injecting such features into the household problem is essential for

accurately representing the joint distribution of income and wealth (e.g., Benhabib

et al. (2015), Benhabib et al. (2017), Stachurski and Toda (2019)).4 Moreover, models

with time-varying discount rates and returns on assets are at the forefront of recent

quantitative analysis of wealth and inequality.5

While it might be hoped that the analysis of the income fluctuation problem (or

household consumption and savings problem) changes little when we shift from con-

stant to state dependent asset returns and rates of time discount, this turns out not

2For example, in a study based on capital income data, Saez and Zucman (2016) find that, in the

case of the US, the share of total household wealth held by the top 0.1% increased from 7 percent

to 22 percent between 1978 and 2012. For a discussion of the heavy-tailed property of the wealth

distribution, see Pareto (1896), Davies and Shorrocks (2000), Benhabib and Bisin (2018), Vermeulen

(2018) or references therein.
3One analysis of the two-way interactions between inequality and political decision making can

be found in Acemoglu and Robinson (2002). Glaeser et al. (2003) show how inequality can alter

economic and social outcomes through subversion of institutions. The same study contains references

on linkages between inequality and growth. Regarding fiscal policy, Brinca et al. (2016) find strong

correlations between wealth inequality and the magnitude of fiscal multipliers, while Bhandari et al.

(2018) study the connection between fiscal-monetary policy, business cycles and inequality. Ahn

et al. (2018) discuss the impact of distributional properties on macroeconomic aggregates.
4Also related is the recent experimental study of Epper et al. (2018), which finds a strong positive

connection between dispersion in subjective rates of time discounting across the population and

realized dispersion in the wealth distribution. This in turn is consistent with earlier empirical

studies such as Lawrance (1991).
5For a recent quantitative study see, for example, Hubmer et al. (2018), where returns on savings

and discount rates are both state dependent (as is labor income). Kaymak et al. (2018) find that

asset return heterogeneity is required to match the upper tail of the wealth distribution.
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to be the case. Effectively modeling these features and the way they map to the

wealth distribution requires significant advances in our understanding of choice and

stochastic dynamics in the setting of optimal savings.

One difficulty is that state-dependent discounting takes us beyond the bounds of tradi-

tional dynamic programming theory. This matters little if there exists some constant

β̄ < 1 such that the discount process {βt} satisfies βt ≤ β̄ for all t with probability

one, since, in this case, a standard contraction mapping argument can still be applied

(see, e.g., Miao (2006) or Cao (2020)). However, recent quantitative studies extend

beyond such settings. For example, AR(1) specifications are increasingly common, in

which case the support of βt is unbounded above at every point in time.6 Even if dis-

cretization is employed, the outcome βt ≥ 1 can occur with positive probability when

the approximation is sufficiently fine. Moreover, such outcomes are not inconsistent

with empirical and experimental evidence, at least for some households in some states

of the world.7 Do there exist conditions on {βt} that allow for βt ≥ 1 in some states

and yet imply existence of optimal polices and practical computational techniques?

Another source of complexity for the income fluctuation problem in the general setting

considered here is that the set of possible values for household assets is typically

unbounded above. For example, when returns on assets are stochastic, a sufficiently

long sequence of favorable returns can compound one another to project a household

to arbitrarily high levels of wealth. This model feature is desirable: We wish to analyze

these kinds of outcomes rather than rule them out. Indeed, Benhabib et al. (2015)

and other related studies argue convincingly that such outcomes are a key causal

mechanism behind the heavy tail of the current distribution of wealth.8 However, if

we accept this logic, then stationarity and ergodicity of the wealth process—which are

fundamental both for estimation and for simulation-based numerical methods—must

now be established in a setting where the wealth distribution has unbounded support.

6See, for example, Hills and Nakata (2018), Hubmer et al. (2018) or Schorfheide et al. (2018).
7See, for example, Loewenstein and Prelec (1991) and Loewenstein and Sicherman (1991).
8One related study is Benhabib et al. (2011), who show that capital income risk is the driving

force of the heavy-tail properties of the stationary wealth distribution. In Blanchard-Yaari style

economies, Toda (2014), Toda and Walsh (2015) and Benhabib et al. (2016) show that idiosyncratic

investment risk generates a double Pareto stationary wealth distribution. Gabaix et al. (2016) point

out that a positive correlation of returns with wealth (“scale dependence”) in addition to persistent

heterogeneity in returns (“type dependence”) can well explain the speed of changes in the tail

inequality observed in the data.
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In such a scenario, what conditions on preferences and financial and labor income are

necessary for these properties to hold?

A final and related example of the need for deeper analysis is as follows: To understand

the upper tail of the wealth distribution, we must avoid unnecessarily truncating the

upper tail of the set of possible asset values in quantitative work. While truncation is

convenient because finite or compact state spaces are easier to handle computationally,

we can attain greater accuracy in modeling the wealth distribution if truncation at the

upper tail can be replaced locally by a parameterized savings function, such as a linear

function (Gouin-Bonenfant and Toda, 2018). However, any such approximation must

be justified by theory. What conditions can be imposed on primitives to generate

such properties while still maintaining realistic assumptions for asset returns and

non-financial income?

In this paper we address all of these questions, along with other key properties of

the income fluctuation problem, such as continuity and monotonicity of the optimal

consumption policy. Our setting admits capital income risk, labor earnings shocks

and time-varying discount rates, driven by a combination of iid innovations and an

exogenous Markov chain {Zt}. The supports of the innovations can be unbounded, so

we admit practical innovation sequences such as normal and lognormal. As a whole,

this environment allows for a range of realistic features, such as stochastic volatility

in returns on asset holdings, or correlation in the shocks impacting asset returns and

non-financial income. The utility function can be unbounded both above and below,

with no specific structure imposed beyond differentiability, concavity and the usual

slope (Inada) conditions.9

To begin, when considering optimality in the household problem, we require a con-

dition on the state dependent discount process {βt} that generalizes the classical

condition β < 1 from the constant case and, for reasons discussed above, permits

βt > 1 with positive probability. To this end, we introduce the restriction10

Gβ < 1 where Gβ := lim
n→∞

(
E

n∏
t=1

βt

)1/n

. (1)

9While the assumption that the exogenous state process {Zt} is a (finite state) Markov chain

might appear restrictive, it fits most practical settings and avoids a host of technical issues that

tend to obscure the key ideas. Moreover, the innovation shocks are not restricted to be discrete, and

the same is true for assets and consumption.
10Here and below we set β0 ≡ 1, so

∏n
t=1 βt =

∏n
t=0 βt.
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Condition (1) clearly generalizes the classical condition β < 1 for the constant dis-

count case. In the stochastic case, lnGβ can be understood as the asymptotic growth

rate of the probability weighted average discount factor. Indeed, if Bn := E
∏n

t=1 βt

is the average n-period discount factor, then, from the definition of Gβ and some

straightforward analysis, we obtain ln(Bn+1/Bn) → lnGβ, so the condition Gβ < 1

implies that the asymptotic growth rate of the average n-period discount factor is

negative, drifting down from its initial condition β0 ≡ 1 at the rate lnGβ. This does

not, of course, preclude the possibility that βt > 1 at any given t.

We show that condition (1) is in fact a necessary condition in those settings where

the classical condition is necessary for finite lifetime values. In this sense it cannot

be further weakened for the income fluctuation problem apart from special cases. At

the same time, it admits the use of convenient specifications such as the discretized

AR(1) process from Hubmer et al. (2018). In addition, we prove that Gβ can be

represented as the spectral radius of a nonnegative matrix, and hence can be computed

by numerical linear algebra (as discussed below).

We also generalize the standard condition βR < 1, where R is the gross interest rate

in the constant case, which is used to ensure stability of the asset path and finiteness

of lifetime valuations, as well as existence of stationary Markov policies (see, e.g.,

Deaton and Laroque (1992), Chamberlain and Wilson (2000) or Li and Stachurski

(2014)). Analogous to (1), we introduce the generalized condition

GβR < 1 where GβR := lim
n→∞

(
E

n∏
t=1

βtRt

)1/n

. (2)

Here {Rt} is a stochastic capital income process. Analogous to the case of Gβ, the

value lnGβR can be understood as the asymptotic growth rate of average gross payoff

on assets, discounted to present value.

We show that, when Conditions (1)–(2) hold and non-financial income satisfies two

moment conditions, a unique optimal consumption policy exists. We also show that

the policy can be computed by successive approximations and analyze its properties,

such as monotonicity and asymptotic linearity. This asymptotic linearity can be

used to successfully model wealth inequality by accurately representing asset path

dynamics for very high wealth households (Gouin-Bonenfant and Toda, 2018).

One important feature of Conditions (1)–(2) is that they take into account the au-

tocorrelation structure of preference shocks and asset returns. For example, if these

processes depend only on iid innovations, then (1) reduces to Eβt < 1 and (2) reduces
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to EβtRt < 1. But returns on assets are typically not iid, since both mean returns

and volatility are, in general, time varying, and preference shocks are typically mod-

eled as correlated (see, e.g., Hubmer et al. (2018) or Schorfheide et al. (2018)). This

dependence must be and is accounted for in (2), since long upswings in {βt} and {Rt}
can lead to explosive paths for valuations and assets.

Next we study asymptotic stability, stationarity and ergodicity of wealth. Such prop-

erties are essential to existence of stationary equilibria in heterogeneous agent models

(e.g., Huggett (1993), Aiyagari (1994) or Cao (2020)), as well as standard estimation,

calibration and simulation techniques that connect time series averages with cross-

sectional moments.11 These properties require an additional restriction, placed on the

asymptotic growth rate of mean returns. Analogous to (1) and (2), this is defined as

GR := lim
n→∞

(
E

n∏
t=1

Rt

)1/n

. (3)

We show that if GR is sufficiently restricted and a degree of social mobility is present,

then there exists a unique stationary distribution for the state process, the distri-

butional path of the state process under the optimal path converges globally to the

stationary distribution, and the stationary distribution is ergodic. We also show that,

under some mild additional conditions, the rate of convergence of marginal distribu-

tions to the stationary distribution is geometric, and that a version of the Central

Limit Theorem is valid. Finally, under some mild additional conditions, we prove

that the stationary distribution of assets is Pareto tailed, consistent with the data.

Our study is related to Benhabib et al. (2015), who prove the existence of a heavy-

tailed wealth distribution in an infinite horizon heterogeneous agent economy with

capital income risk. In the process, they show that households facing a stochastic

return on savings possess a unique optimal consumption policy characterized by the

(boundary constraint-contingent) Euler equation, and that a unique and unbounded

stationary distribution exists for wealth under this consumption policy. They assume

isoelastic utility, constant discounting, and mutually independent, iid returns and

labor income processes, both supported on bounded closed intervals with strictly

positive lower bounds. We relax all of these assumptions. Apart from allowing more

general utility and state dependent discounting, this permits such realistic features for

household income as positive correlations between labor earnings and wealth returns

11A well-known example of a computational technique that uses ergodicity can be found in Krusell

and Smith (1998). On the estimation side see, for example, Hansen and West (2002).
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(an extension that was suggested by Benhabib et al. (2015)), or time varying volatility

in returns.12

Another related paper is Chamberlain and Wilson (2000), which studies an income

fluctuation problem with stochastic income and asset returns and obtains many signif-

icant results on asymptotic properties of consumption. Their study imposes relatively

few restrictions on the wealth return and labor income processes. Our paper extends

their work by allowing for random discounting, as well as dropping their boundedness

restriction on the utility, which prevents their work from being used in many standard

settings such as constant relative risk aversion. We also develop a set of new results

on stability and ergodicity, as well as asymptotic normality of the wealth process.

Our optimality theory draws on techniques found in Li and Stachurski (2014), who

show that the time iteration operator is a contraction mapping with respect to a met-

ric that evaluates consumption differences in terms of marginal utility, while assuming

a constant discount factor and constant rate of return on assets.13 We show that these

ideas extend to a setting where both returns and discount rates are stochastic and

time varying. Our results on dynamics under the optimal policy have no counterparts

in Li and Stachurski (2014).

In a similar vein, our work is related to several other papers that treat the standard

income fluctuation problems with constant rates of return on assets and constant

discount rates, such as Rabault (2002), Carroll (2004) and Kuhn (2013). While

Carroll (2004) constructs a weighted supremum norm contraction and works with the

Bellman operator, the other two papers focus on time iteration. In particular, Rabault

(2002) exploits the monotonicity structure, while Kuhn (2013) applies a version of

the Tarski fixed point theorem. Our techniques for studying optimality are close to

those in Li and Stachurski (2014), as discussed above.14

12Empirical motivation for these kinds of extensions can be found in numerous studies, including

Guvenen and Smith (2014) and Fagereng et al. (2016a,b).
13Coleman (1990) introduced the time iteration operator as a constructive method for solving

stochastic growth models. It has since been used in Datta et al. (2002), Morand and Reffett (2003)

and many other studies.
14Our paper is also related to Cao and Luo (2017), who study wealth inequality in a continuous-

time framework with heterogeneous returns following a two-state Markov chain. While we do not

pursue the connection here, the generality of our setup, including a persistent shock structure to

wealth returns, might permit a study of the continuous-time limit that yields the tail results of Cao

and Luo (2017) in a general framework.
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The rest of this paper is structured as follows. Section 2 formulates the problem and

establishes optimality results. Sufficient conditions for the existence and uniqueness

of optimal policies are discussed. Section 3 focuses on stochastic stability. Section 4

discusses our key conditions and how they can be checked. Section 5 provides a set of

applications and Section 6 concludes. All proofs are deferred to the appendix. Code

that generates our figures can be found at https://github.com/jstac/ifp_public.

2. The Income Fluctuation Problem and Optimality Results

This section formulates the income fluctuation problem we consider, establishes the

existence, uniqueness and computability of a solution, and derives its properties.

2.1. Problem Statement. We consider a general income fluctuation problem, where

a household chooses a consumption-asset path {(ct, at)} to solve

max E0

{
∞∑
t=0

(
t∏
i=0

βi

)
u(ct)

}
s.t. at+1 = Rt+1(at − ct) + Yt+1, (4)

0 ≤ ct ≤ at, (a0, Z0) = (a, z) given.

Here u is the utility function, {βt}t≥0 is discount factor process with β0 = 1, {Rt}t≥1

is the gross rate of return on wealth, and {Yt}t≥1 is non-financial income. These

stochastic processes obey

βt = β (Zt, εt) , Rt = R (Zt, ζt) , and Yt = Y (Zt, ηt) , (5)

where β, R and Y are measurable nonnegative functions and {Zt}t≥0 is an irreducible

time-homogeneous Z-valued Markov chain taking values in finite set Z. Let P (z, ẑ)

be the probability of transitioning from z to ẑ in one step. The innovation processes

{εt}, {ζt} and {ηt} are iid independent and their supports can be continuous and

vector-valued.

The function u maps R+ to {−∞} ∪ R, is twice differentiable on (0,∞), satisfies

u′ > 0 and u′′ < 0 everywhere on (0,∞), and that u′(c)→∞ as c→ 0 and u′(c) < 1

as c→∞. We define

Ea,z := E
[
·
∣∣ (a0, Z0) = (a, z)

]
and Ez := E

[
·
∣∣Z0 = z

]
. (6)

The next period value of a random variable X is typically denoted X̂. Expectation

without a subscript refers to the stationary process, where Z0 is drawn from its

(necessarily unique) stationary distribution.

https://github.com/jstac/ifp_public


9

2.2. Key Conditions. Our conditions for optimality are listed below. In what fol-

lows, Gβ is the asymptotic growth rate of the discount process as defined in (1).

Assumption 2.1. The discount factor process satisfies Gβ < 1.

Assumption 2.1 is a natural extension of the standard condition β < 1 from the

constant discount case. If βt ≡ β for all t, then Gβ = β, as follows immediately

from the definition. It is weaker than the obvious sufficient condition βt ≤ β̄ with

probability one for some constant β̄ < 1, since in such a setting we have Gβ ≤ β̄ < 1.

In fact it cannot be significantly weakened, as the proposition shows.

Proposition 2.1 (Necessity of the discount condition). Let βt and u(Yt) be positive

with probability one for all t and all initial states z in Z. If, in this setting, we have

Gβ ≥ 1, then the objective in (4) is infinite at every initial state (a, z).

The positivity assumed here may or may not hold in applications, but Proposition 2.1

shows that special conditions will have to be imposed on preferences if Assumption 2.1

fails. Put differently, allowing Gβ ≥ 1 is tantamount to allowing β ≥ 1 in the case

when the discount rate is constant.

Next, we need to ensure that the present discounted value of wealth does not grow

too quickly, which requires a joint restriction on asset returns and discounting. When

{Rt} and {βt} are constant at values R and β, the standard restriction from the

existing literature is βR < 1. A generalization using GβR as defined in (2) is

Assumption 2.2. The discount factor and return processes satisfy GβR < 1.

Finally, we impose routine technical restrictions on non-financial income. The second

restriction is needed to exploit first order conditions.

Assumption 2.3. EY <∞ and Eu′(Y ) <∞.

Next we provide one example where Assumptions 2.1–2.3 are easily verified. More

complex examples are deferred to Sections 4 and 5.

Example 2.1. Suppose, as in Benhabib et al. (2015), that there is a constant dis-

count factor β < 1, utility is CRRA with γ ≥ 1, {Rt} and {Yt} are iid, mutually

independent, supported on bounded closed intervals of strictly positive real numbers,

and, moreover,

βER1−γ
t < 1 and (βER1−γ

t )1/γ
ERt < 1. (7)
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Assumptions 2.1–2.3 are all satisfied in this case. To see this, observe that Gβ = β < 1

in the constant discount case, so Assumption 2.1 holds. Since x 7→ x1−γ is convex

when γ ≥ 1, Jensen’s inequality implies that ER1−γ
t ≥ (ERt)

1−γ. Multiplying both

sides of the last inequality by β(ERt)
γ yields

GβR = βERt = β(ERt)
1−γ(ERt)

γ ≤ (βER1−γ
t )(ERt)

γ.

By the second condition of (7), Assumption 2.2 holds. Assumption 2.3 also holds

because Yt is restricted to a compact subset of the positive reals.

2.3. Optimality: Definitions and Fundamental Properties. To consider opti-

mality, we temporarily assume that a0 > 0 and set the asset space to (0,∞).15 The

state space for {(at, Zt)}t≥0 is then S0 := (0,∞) × Z. A feasible policy is a Borel

measurable function c : S0 → R with 0 ≤ c(a, z) ≤ a for all (a, z) ∈ S0. A feasible

policy c and initial condition (a, z) ∈ S0 generate an asset path {at}t≥0 via (4) when

ct = c(at, Zt) and (a0, Z0) = (a, z). The lifetime value of policy c is

Vc(a, z) = Ea,z

∞∑
t=0

β0 · · · βtu [c(at, Zt)] , (8)

where {at} is the asset path generated by (c, (a, z)). In the Appendix we show that

Vc is well-defined on S0. A feasible policy c∗ is called optimal if Vc ≤ Vc∗ on S0 for

any feasible policy c. A feasible policy is said to satisfy the first order optimality

condition if

(u′ ◦ c) (a, z) ≥ Ez β̂R̂ (u′ ◦ c)
(
R̂ [a− c(a, z)] + Ŷ , Ẑ

)
(9)

for all (a, z) ∈ S0, and equality holds when c(a, z) < a. Noting that u′ is decreasing,

the first order optimality condition can be compactly stated as

(u′ ◦ c) (a, z) = max
{
Ez β̂R̂ (u′ ◦ c)

(
R̂ [a− c(a, z)] + Ŷ , Ẑ

)
, u′(a)

}
(10)

for all (a, z) ∈ S0. A feasible policy is said to satisfy the transversality condition if,

for all (a, z) ∈ S0,

lim
t→∞

Ea,z β0 · · · βt (u′ ◦ c) (at, Zt) at = 0. (11)

Theorem 2.1 (Sufficiency of first order and transversality conditions). If Assump-

tions 2.1–2.3 hold, then every feasible policy satisfying the first order and transver-

sality conditions is an optimal policy.

15Assumption 2.3 combined with u′(0) = ∞ implies that P{Yt > 0} = 1 for all t ≥ 1. Hence,

P{at > 0} = 1 for all t ≥ 1 and excluding zero from the asset space makes no difference to optimality.
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2.4. Existence and Computability of Optimal Consumption. Let C be the

space of continuous functions c : S0 → R such that c is increasing in the first argument,

0 < c(a, z) ≤ a for all (a, z) ∈ S0, and

sup
(a,z)∈S0

|(u′ ◦ c)(a, z)− u′(a)| <∞. (12)

To compare two consumption policies, we pair C with the distance

ρ(c, d) := ‖u′ ◦ c− u′ ◦ d‖ := sup
(a,z)∈S0

|(u′ ◦ c) (a, z)− (u′ ◦ d) (a, z)| , (13)

which evaluates the maximal difference in terms of marginal utility. While elements

of C are not generally bounded, ρ is a valid metric on C . In particular, ρ is finite

on C since ρ(c, d) ≤ ‖u′ ◦ c− u′‖+ ‖u′ ◦ d− u′‖, and the last two terms are finite by

(12). In Appendix B, we show that (C , ρ) is a complete metric space. The following

proposition shows that, for any policy in C , the first order optimality condition (10)

implies the transversality condition.

Proposition 2.2 (Sufficiency of first order condition). Let Assumptions 2.1–2.3 hold.

If c ∈ C and the first order optimality condition (10) holds for all (a, z) ∈ S0, then c

satisfies the transversality condition. In particular, c is an optimal policy.

We aim to characterize the optimal policy as the fixed point of the time iteration

operator T defined as follows: for fixed c ∈ C and (a, z) ∈ S0, the value of the image

Tc at (a, z) is defined as the ξ ∈ (0, a] that solves

u′(ξ) = ψc(ξ, a, z), (14)

where ψc is the function on

G := {(ξ, a, z) ∈ R+ × (0,∞)× Z : 0 < ξ ≤ a} (15)

defined by

ψc(ξ, a, z) := max
{
Ez β̂R̂(u′ ◦ c)[R̂(a− ξ) + Ŷ , Ẑ], u′(a)

}
. (16)

The following theorem shows that the time iteration operator is an n-step contraction

mapping on a complete metric space of candidate policies and its fixed point is the

unique optimal policy.

Theorem 2.2 (Existence, uniqueness and computability of optimal policies). If As-

sumptions 2.1–2.3 hold, then there exists an n in N such that T n is a contraction

mapping on (C , ρ). In particular,



12

(1) T has a unique fixed point c∗ ∈ C .

(2) The fixed point c∗ is the unique optimal policy in C .

(3) For all c ∈ C we have ρ(T kc, c∗)→ 0 as k →∞.

Part (3) shows that, under our conditions, the familiar time iteration algorithm is

globally convergent, provided one starts with some policy in the candidate class C .

2.5. Properties of Optimal Consumption. In this section we study the properties

of the optimal consumption function obtained in Theorem 2.2. Assumptions 2.1–2.3

are held to be true throughout. The following two propositions show the monotonicity

of the consumption function, which is intuitive.

Proposition 2.3 (Monotonicity with respect to wealth). The optimal consumption

and savings functions c∗(a, z) and i∗(a, z) := a− c∗(a, z) are increasing in a.

Proposition 2.4 (Monotonicity with respect to income). If {Y1t} and {Y2t} are two

income processes satisfying Y1t ≤ Y2t for all t and c∗1 and c∗2 are the corresponding

optimal consumption functions, then c∗1 ≤ c∗2 pointwise on S0.

Under further assumptions we can show that the optimal policy is concave and asymp-

totically linear with respect to the wealth level.

Proposition 2.5 (Concavity and asymptotic linearity of consumption function). If

for each z ∈ Z and c ∈ C that is concave in its first argument,

x 7→ (u′)−1
[
Ezβ̂R̂ (u′ ◦ c) (R̂x+ Ŷ , Ẑ)

]
is concave on R+, (17)

then

(1) a 7→ c∗(a, z) is concave, and

(2) there exists α(z) ∈ [0, 1] such that lima→∞[c∗(a, z)/a] = α(z).

Remark 2.1. Condition (17) imposes some concavity structure on utility. It holds

for the constant relative risk aversion (CRRA) utility function

u(c) =
c1−γ

1− γ
if γ > 0 and u(c) = log c if γ = 1, (18)

as shown in Appendix B.
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Proposition 2.5 states that c∗(a, z) ≈ α(z)a + b(z) for some function b(z) when a is

large. This provides justification for linearly extrapolating the policy functions when

computing them at high wealth levels.

Together, parts (1) and (2) of Proposition 2.5 imply the linear lower bound c∗(a, z) ≥
α(z)a, although they do not provide a concrete number for α(z). The following

proposition establishes an explicit linear lower bound.

Proposition 2.6 (Linear lower bound on consumption). If there exists a nonnegative

constant s̄ such that

s̄ < 1 and Ez β̂R̂ u
′(R̂ s̄ a) ≤ u′(a) for all (a, z) ∈ S0, (19)

then c∗(a, z) ≥ (1− s̄)a for all (a, z) ∈ S0.16

The second inequality in (19) restricts marginal utility derived from transferring

wealth to the next period and then consuming versus consuming wealth today. The

value s̄ can be clarified once primitives are specified, as the next example illustrates.

Example 2.2. Suppose that utility is CRRA, as in (18). If we now take

s̄ :=

(
max
z∈Z

Ezβ̂R̂
1−γ
)1/γ

(20)

and s̄ < 1, then the conditions of Proposition 2.6 hold. In particular, the second

inequality in (19) holds, as follows directly from the definition of s̄ and u′(x) = x−γ.

In the case of Benhabib et al. (2015), where the discount rate is constant and returns

are iid, the expression in (20) reduces to s̄ := (βER1−γ
t )1/γ. The requirement s̄ < 1

then reduces to βER1−γ
t < 1, which is one of their assumptions (see Example 2.1).

3. Stationarity, Ergodicity, and Tail Behavior

This section focuses on stationarity, ergodicity and tail behavior of wealth under

the unique optimal policy c∗ obtained in Theorem 2.2. So that this policy exists,

Assumptions 2.1–2.3 are always taken to be valid. We extend c∗ to S by setting

16We adopt the convention 0 · ∞ = 0, so condition (19) does not rule out the case P{Rt = 0 |
Zt−1 = z} > 0. Indeed, as shown in the proofs, the conclusions still hold if we replace this condition

by the weaker alternative Ezβ̂R̂ u
′[R̂s̄a+ (1− s̄)Ŷ ] ≤ u′(a) for all (a, z) ∈ S0.



14

c∗(0, z) = 0 for all z ∈ Z and consider dynamics of (at, Zt) on S := R+ × Z, the law

of motion for which is

at+1 = R (Zt+1, ζt+1) [at − c∗ (at, Zt)] + Y (Zt+1, ηt+1) , (21a)

Zt+1 ∼ P (Zt, · ) (21b)

Let Q be the joint stochastic kernel of (at, Zt) on S. See Appendix A for this and

related definitions.

3.1. Stationarity. To obtain existence of a stationary distribution we need to re-

strict the asymptotic growth rate for asset returns GR defined in (3).

Assumption 3.1. There exists a constant s̄ such that (19) holds and s̄ GR < 1.

Below is one straightforward example of a setting where this holds, with more complex

applications deferred to Sections 4–5.

Example 3.1. Assumption 3.1 holds in the setting of Benhabib et al. (2015). As

shown in Example 2.2, with s̄ := (βER1−γ
t )1/γ and the assumptions of Benhabib

et al. (2015) in force, the conditions of (19) hold. Moreover, in their iid setting we

have GR = ERt, so s̄ GR < 1 reduces to (βER1−γ
t )1/γ

ERt < 1. This is one of their

conditions, as discussed in Example 2.1.

By Proposition 2.6, the value s̄ in Assumption 3.1 is an upper bound on the rate

of savings. GR is an asymptotic growth rate for each unit of savings invested. If

the product of these is less than one, then probability mass contained in the wealth

distribution will not drift to +∞, which allows us to obtain the following result.17

Theorem 3.1 (Existence of a stationary distribution). If Assumption 3.1 holds, then

Q admits at least one stationary distribution on S.

Stationarity of the form obtained in Theorem 3.1 is required to establish existence of

stationary recursive equilibria in heterogeneous agent models with idiosyncratic risk,

such as Huggett (1993) or Aiyagari (1994).18

17Assumption 3.1 is weaker than any restriction implying wealth is bounded from above—a com-

mon device for compactifying the state space and thereby obtaining a stationary distribution. In-

deed, under many specifications of {Yt} and {Rt} that fall within our framework, wealth of a given

household can and will, over an infinite horizon, exceed any finite bound with probability one. See,

for example, Benhabib et al. (2015), Proposition 6.
18For models with aggregate shocks, such as Krusell and Smith (1998), a fully specified recursive

equilibrium requires that households take the wealth distribution as one component of the state in
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3.2. Ergodicity. While Assumption 3.1 implies existence of a stationary distribu-

tion, it is not in general sufficient for uniqueness or stability. For these additional

properties to hold, we must impose sufficient mixing. In doing so, we consider the

following two cases:

(Y1) The support of {Yt} is finite.

(Y2) The process {Yt} admits a density representation.

Condition (Y2) means that there exists a function f from R+ × Z to R+ such that

P{Yt ∈ A | Zt = z} =

∫
A

f(y | z) dy (22)

for all Borel sets A ⊂ R+ and all z in Z.

Assumption 3.2. There exists a z̄ in Z such that P (z̄, z̄) > 0. Moreover, with y` ≥ 0

defined as the greatest lower bound of the support of {Yt}, either

• (Y1) holds and P{Yt = y` | Zt = z̄} > 0, or

• (Y2) holds and there exists a δ > y` such that f (· | z̄) > 0 on (y`, δ).

Assumption 3.2 requires that there is a positive probability of receiving low labor

income at some relatively persistent state of the world z̄. This is a mixing condition

that enforces social mobility. The reason is that {Zt} is already assumed to be

irreducible, so z̄ is eventually visited by each household. For any such household,

there is a positive probability of low labor income over a long period. Wealth then

declines. In other words, currently rich households or dynasties will not be rich

forever. This guarantees sufficient social mobility between rich and poor, generating

ergodicity.

To state our uniqueness and stability results, let Qt be the t-step stochastic kernel,

let ‖ · ‖TV be total variation norm and let V (a, z) := a+mV , where mV is a constant

to be defined in the proof. For any integrable real-valued function h on S, let

h̄(a, z) := h(a, z)−Eh(at, Zt)

and

γ2
h := E

[
h̄2(a0, Z0)

]
+ 2

∞∑
t=1

E
[
h̄(a0, Z0)h̄(at, Zt)

]
,

their savings problem, and that stationarity holds for the entire joint distribution (defined over a

product space encompassing both the wealth distribution and the exogenous state process). These

problems fall outside the scope of Theorem 3.1, since {Zt} is finite-valued. For a careful treatment

of stationary recursive equilibrium in Krusell–Smith type models, see Cao (2020).
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where, here and in the theorem below, E indicates expectation under stationarity.

Theorem 3.2 (Uniqueness, stability, ergodicity and mixing). If Assumptions 3.1 and

3.2 hold, then

(1) the stationary distribution ψ∞ of Q is unique and there exist constants λ < 1

and M <∞ such that,∥∥Qt ((a, z), ·)− ψ∞
∥∥
TV
≤ λtMV (a, z) for all (a, z) ∈ S.

(2) For all (a, z) ∈ S and real-valued function h on S such that E|h(at, Zt)| <∞,

Pa,z

{
lim
T→∞

1

T

T∑
t=1

h(at, Zt) = Eh(at, Zt)

}
= 1.

(3) Q is V -geometrically mixing. Moreover, if γ2
h > 0 and h2/V is bounded,

1√
Tγ2

h

T∑
t=1

h̄(at, Zt)
d→ N(0, 1) as T →∞.

Part 1 of Theorem 3.2 states that the stationary distribution ψ∞ is unique and asymp-

totically attracting at a geometric rate. Part 2 states that the state process is er-

godic, and hence long-run sample moments for individual households coincide with

cross-sectional moments. The notion of mixing discussed in Part 3 is defined in the

appendix. It states that social mobility holds asymptotically and mixing occurs at a

geometric rate, although the rate may be arbitrarily slow. This mixing is enough to

provide a Central Limit Theorem for the state process, which is the second claim in

Part 3.

3.3. Tail Behavior. Having established the stationarity and ergodicity of wealth,

we now study the tail behavior of the wealth distribution. We show that the wealth

distribution is either bounded or (unbounded and) heavy-tailed under mild conditions.

To prove this result we introduce the following assumption.

Assumption 3.3. The assumptions of Proposition 2.5 are satisfied, so the optimal

policy a 7→ c∗(a, z) is concave and asymptotically linear: lima→∞ c
∗(a, z)/a = α(z) ∈

[0, 1]. Furthermore, there exists z̄ ∈ Z such that P (z̄, z̄) > 0 and

Pz̄{R(z̄, ζ̂)(1− α(z̄)) > 1} > 0. (23)
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Remark 3.1. Condition (23) implies that wealth grows with nonzero probability

when it is large. Indeed, using the law of motion (21a) and noting that Y ≥ 0, if

Zt = Zt+1 = z̄, then by (23) we have

at+1

at
≥ R (z̄, ζt+1) [1− c∗(at, z̄)/at] > 1

with positive probability if at is large enough.

To state our result on tail behavior, we introduce the following notation. For any

nonnegative function A(z, ẑ, ζ̂), define the Z× Z matrix-valued function MA by

(MA(s))(z, ẑ) = Ez,ẑA(z, ẑ, ζ̂)s. (24)

Elements of MA(s) are conditional moment generating functions of logA. In the

statement below, � denotes the Hadamard (entry-wise) product, and r(·) returns the

spectral radius of a matrix. Also a∞ is a random variable with distribution ψ∞(·,Z).

Theorem 3.3 (Tail behavior). Let Assumptions 3.1–3.3 hold and define

G(z, ẑ, ζ̂) = R(ẑ, ζ̂)(1− α(z)), (25a)

A(z, ẑ, ζ̂) = G(z, ẑ, ζ̂)1{G(z, ẑ, ζ̂) > 1}, and (25b)

λ(s) = r(P �MA(s)). (25c)

Then λ is convex in s ≥ 0. Assume that there exists s > 0 in the interior of the

domain of λ such that 1 < λ(s) <∞ and let

κ := inf{s > 0 |λ(s) > 1}. (26)

If a∞ has unbounded support, then it is heavy-tailed. In particular, for any ε > 0,

lim inf
a→∞

aκ+ε
P{a∞ ≥ a} > 0. (27)

Remark 3.2. The assumption 1 < λ(s) < ∞ for some s > 0 is weak. Because the

(z̄, z̄)-th element of P �MA(s) is

P (z̄, z̄)Ez̄,z̄G(z̄, z̄, ζ̂)s1{G(z̄, z̄, ζ̂) > 1},

by the definition of G in (25a) and condition (23), we always have λ(s) → ∞ as

s → ∞. Hence there exists s > 0 such that λ(s) ∈ (1,∞) if, for example, ζ̂ has a

compact support.

Condition (27) implies that for any ε > 0, there exists a constant C(ε) > 0 such that

P{a∞ ≥ a} ≥ C(ε)a−κ−ε

for large enough a, so the upper tail of the wealth distribution is at least Pareto.
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Remark 3.3. Toda (2019) constructs an example of a Huggett (1993) economy with

Pareto-tailed wealth distribution when discount factors are random. Theorem 3.3 is

significantly more general as we allow for stochastic returns and income. Stachurski

and Toda (2019) prove that with constant discount factor, constant asset return, and

light-tailed income, the wealth distribution is always light-tailed. Theorem 3.3 shows

that sufficient heterogeneity in discount factor or returns generates heavy tails.

Example 3.2. The CRRA-iid setting of Benhabib et al. (2015) satisfies the assump-

tions of Theorem 3.3. When utility is CRRA, by Proposition 5 of Benhabib et al.

(2015), condition (23) holds if R(z̄, ζ̂) > 1/s̄ with positive probability, where s̄ is given

in Example 2.2. In the iid case, this condition reduces to P{(βER1−γ
t )1/γRt > 1} > 0,

which holds under the conditions of Benhabib et al. (2015).19 Thus, Assumption 3.3

holds. The existence of s > 0 with λ(s) ∈ (1,∞) follows from Remark 3.2 and the

assumption that Rt has a compact support.

4. Testing the Growth Conditions

The three key conditions in the paper are the restrictions on the growth rates Gβ, GβR

and GR, with the first two required for optimality and the last for stationarity (see

Assumptions 2.1, 2.2 and 3.1 respectively). In this section we explore the restrictions

implied by these conditions. We begin with the following result, which yields a

straightforward method for computing these growth rates.

Lemma 4.1 (Long-run growth rates and spectral radii). Let ϕt = ϕ(Zt, ξt), where

ϕ is a nonnegative measurable function and {ξt} is an iid sequence with marginal

distribution π. In this setting we have

Gϕ = r(Lϕ), where Gϕ := lim
n→∞

(
E

n∏
t=1

ϕt

)1/n

(28)

and r(Lϕ) is the spectral radius of the matrix defined by

Lϕ(z, ẑ) = P (z, ẑ)

∫
ϕ(ẑ, ξ̂)π(dξ̂). (29)

19Benhabib et al. (2015) assume that P{βRt > 1} > 0, so it suffices to show that (βER1−γ
t )1/γ ≥

β or, equivalently, E(βRt)
1−γ ≥ 1. By Jensen’s inequality and their restriction γ ≥ 1, the last

bound is true whenever (EβRt)
1−γ ≥ 1. But this must hold because, under their conditions, we

have βERt < 1, as shown in Example 2.1.
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The matrix Lϕ is expressed as a function on Z× Z in (29) but can be represented in

traditional matrix notation by enumerating Z.20

What factors determine the long-run average growth rates embedded in our assump-

tions, such as Gβ or GR? Lemma 4.1 tells us how to compute these values for a given

specification of dynamics, but how should we understand them intuitively and what

factors determine their size? To address these questions, let us consider an AR(1)

discount factor process, which has been adopted in several recent quantitative studies

(see, e.g., Hubmer et al. (2018) or Hills and Nakata (2018)). In particular, suppose

that the state process follows a discretized version of

Zt+1 = (1− ρ)µ+ ρZt + (1− ρ2)1/2συt+1, {υt}
iid∼ N(0, 1), (30)

and βt = Zt. (The discretization implies that βt is always positive.) To simplify

interpretation, the process (30) is structured so that the stationary distribution of

{Zt} is N(µ, σ2). We use Rouwenhorst (1995)’s method to discretize {Zt} and then

calculate Gβ using Lemma 4.1, studying how Gβ is affected by the parameters in (30).

Since βt = Zt for all t, the structure of (30) implies that µ is the long-run unconditional

mean of {βt}. It can therefore be set to standard calibrated value for the discount

factor, such as 0.99 from Krusell and Smith (1998). What we wish to understand is

how the remaining parameters ρ and σ affect the value of Gβ. While no closed form

expression is available in this case, Figure 1 sheds some light by providing a contour

plot of Gβ over a set of (ρ, σ) pairs. The figure shows that Gβ grows with both the

persistence term ρ and volatility term σ. In particular, the condition Gβ < 1 fails

when the persistence and volatility of the discount factor process are sufficiently high.

This is because Gβ is the limit of (E
∏n

t=1 βt)
1/n

and, for positive random variables,

sequence of large outcomes have a strong compounding effect on their product. High

volatility and high persistence reinforce this effect.

This discussion has focused on Gβ but similar intuition applies to both GR and GβR.

If βt and Rt are both increasing functions of the state process, then these asymptotic

growth rates also increase with greater persistence and volatility in the state process,

as well as higher unconditional mean. The next section further illustrates these points.

20Specifically, if Z := {z1, . . . , zN}, then Lϕ = PDϕ where P is, as before, the transition matrix

for the exogenous state, and Dϕ := diag (Ez1ϕ, . . . ,EzNϕ) when Ezϕ := Ezϕ(z, ξ̂). In what follows,

Dβ , DR and DβR are defined analogously to Dϕ.
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Figure 1. Contour plot of Gβ under AR(1) discounting

5. Application: Stochastic Volatility and Mean Persistence

We showed in Examples 2.1, 2.2 and 3.1 that, in the setting of Benhabib et al.

(2015), where the discount factor is constant and returns and labor income are iid,

Assumptions 2.1–2.3 and Assumption 3.1 are all satisfied. Hence, by Theorems 2.2

and 3.1, the household optimization problem has a unique optimal policy and the

wealth process under this policy has a stationary solution. If, in addition, the support

of Yt is finite or Yt has a positive density, say, then the conditions of Theorem 3.2 also

hold and the stationary solution is ergodic, geometrically mixing and its time series

averages are asymptotically normal.

Let us now bring the model closer to the data by relaxing the iid restrictions on finan-

cial and non-financial returns, introducing both mean persistence and time varying

volatility in returns on assets.21 In particular, we set

logRt = µt + σtζt, (31)

where {ζt} is iid and standard normal and {µt} and {σt} are finite-state Markov

chains, discretized from

µt = (1− ρµ)µ̄+ ρµµt−1 + δµυ
µ
t and log σt = (1− ρσ)σ̄ + ρσ log σt−1 + δσυ

σ
t .

21The importance of these features for wealth dynamics was highlighted in Fagereng et al. (2016a).
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Innovations are iid and standard normal. Using the data in Fagereng et al. (2016b)

on Norwegian financial returns over 1993–2003, we estimate these AR(1) models to

obtain µ̄ = 0.0281, ρµ = 0.5722, δµ = 0.0067, σ̄ = −3.2556, ρσ = 0.2895 and

δσ = 0.1896. Based on this calibration, the stationary mean and standard deviation

of {Rt} are around 1.03 and 4%, respectively.

To distinguish the effects of stochastic volatility and mean persistence, we consider

two subsidiary models. The first reduces {µt} to its stationary mean µ̄, while the

second reduces {σt} to its stationary mean σ̃ := eσ̄+δ2σ/2(1−ρ2σ). In summary,

logRt = µ̄+ σtζt (Model I)

logRt = µt + σ̃ζt (Model II)

We set β = 0.95 and γ = 1.5. To test the stability properties of Model I, we explore

a neighborhood of the calibrated (ρσ, δσ) values, while in Model II, we do likewise for

(ρµ, δµ) pairs. In each scenario, other parameters are fixed to the benchmark. The

results are shown in Figures 2 and 3.

In part (a) of each figure, we see that GβR is increasing in the persistence and volatility

parameters of the state process. The intuition behind this feature was explained in

Section 4 for the case of Gβ and is similar here. (Note that GβR = βGR in the

present case, since βt ≡ β is a constant, so GβR has the same shape as GR in terms

of contours.) The dots in the figures show that GβR < 1 at the estimated parameter

values.

Part (b) of each figure shows the set of parameters under which the model is globally

stable and ergodic. The stability threshold is the boundary of the set of parameter

pairs that produce max{GβR, s̄, s̄GR} < 1, where s̄ is given by (20). For such pairs,

Assumptions 2.2 and 3.1 both hold, so the conditions of Theorems 3.1–3.2 are satisfied.

(We are continuing to suppose that Yt is finite or has a positive density, so that

Assumption 3.2 holds. Assumptions 2.1 and 2.3 are always valid in the current

setting). Observe that the estimated parameter values (dot points) lie inside the

stable set.

6. Conclusion

We studied an updated version of the income fluctuation problem, the “common

ancestor” of modern macroeconomic theory (Ljungqvist and Sargent (2012), p. 3.)
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Figure 2. Stability tests for Model I

Working in a setting where returns on financial assets, non-financial income and impa-

tience are all state dependent and fluctuate over time, we obtained conditions under

which the household savings problem has a unique solution that can be computed by

successive approximations and the wealth process under the optimal savings policy
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Figure 3. Stability tests for Model II

has a unique stationary distribution with Pareto right tail. We also obtained condi-

tions under which wealth is ergodic and exhibits geometric mixing and asymptotic

normality. We investigated the nature of our conditions and provided methods for

testing them in applications. While our work was motivated by the desire to bet-

ter understand the joint distribution of income and wealth, the income fluctuation
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problem also has applications in asset pricing, life-cycle choice, fiscal policy, monetary

policy, optimal taxation, and social security. The ideas contained in this paper should

be helpful for those fields after suitable modifications or extensions.

Appendix A. Preliminaries

Given a topological space T, let B(T) be the Borel σ-algebra and P(T) be the

probability measures on B(T). A stochastic kernel Π on T is a map Π: T×B(T)→
[0, 1] such that x 7→ Π(x,B) is B(T)-measurable for each B ∈ B(T) and B 7→ Π(x,B)

is a probability measure on B(T) for each x ∈ T. For all t ∈ N, x, y ∈ T and B ∈
B(T), we define Π1 := Π and Πt(x,B) :=

∫
Πt−1(y,B)Π(x, dy). Furthermore, for all

µ ∈P(T), let (µΠt)(B) :=
∫

Πt(x,B)µ(dx). Π is called Feller if x 7→
∫
h(y)Π(x, dy)

is continuous on T whenever h is bounded and continuous on T. We call ψ ∈P(T)

stationary for Π if ψΠ = ψ.

A sequence {µn} ⊂P(T) is called tight, if, for all ε > 0, there exists a compact K ⊂ T

such that µn(T\K) ≤ ε for all n. A stochastic kernel Π is called bounded in probability

if the sequence {Qt(x, ·)}t≥0 is tight for all x ∈ T. Given µ ∈ P(T), we define the

total variation norm ‖µ‖TV := supg:|g|≤1

∣∣∫ g dµ
∣∣. Given any measurable map V : T→

[1,∞), we say that Π is V -geometrically mixing if there exist constants M <∞ and

λ < 1 such that, for all x ∈ T and t ≥ 0, the corresponding Markov process {Xt}
satisfies supk≥0;h2, g2≤V |Exg(Xt)h(Xt+k)− [Exg(Xt)] [Exh(Xt+k)]| ≤ λtMV (x).

Below we use (Ω,F ,P) to denote a fixed probability space on which all random

variables are defined. E is expectations with respect to P. The state process {Zt}
and the innovation processes {εt}, {ζt} and {ηt} introduced in (5) live on this space.

In what follows, {Zt} is a stationary version of the chain, where Z0 is drawn from its

unique stationary distribution—henceforth denoted πZ . The marginal distributions

of the innovations are denoted by πε, πζ and πη respectively. We let {Ft} be the

natural filtration generated by {Zt} and the three innovation processes. Pz conditions

on Z0 = z and Ez is expectation under Pz.

We first prove Lemma 4.1, since its implications will be used immediately below. In

the proof, we consider the matrix Lϕ as a linear operator on RZ and identify vectors

in RZ with real-valued functions on Z.
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Proof of Lemma 4.1. A proof by induction confirms that, for any function h ∈ RZ,

Lnϕ h(z) = Ez

n∏
t=1

ϕth(Zt), (32)

where Lnϕ is the n-th composition of the operator Lϕ with itself (or, equivalently, the

n-th power of the matrix Lϕ). The positivity of Lϕ and Theorem 9.1 of Krasnosel’skii

et al. (2012) imply that r(Lϕ) = limn→∞ ‖Lnϕ h‖1/n when ‖ · ‖ is any norm on RZ and

h is everywhere positive on Z. With h ≡ 1 and ‖f‖ = E|f(Z0)|, this becomes

r(Lϕ) = lim
n→∞

(
ELnϕ 1(Z0)

)1/n
= lim

n→∞

(
EEZ0

n∏
t=1

ϕt

)1/n

= lim
n→∞

(
E

n∏
t=1

ϕt

)1/n

(33)

where the second equality is due to (32) and h = 1 and the third is by the law of

iterated expectations. �

Lemma A.1. Let {ϕt} and Gϕ be as defined in Lemma 4.1. If Gϕ < 1, then there

exists an N in N and a δ < 1 such that maxz∈ZEz
∏n

t=1 ϕt < δn whenever n ≥ N .

Proof. Recalling from the proof of Lemma 4.1 that r(Lϕ) = limn→∞ ‖Lnϕ h‖1/n when

‖ · ‖ is any norm on RZ and h is everywhere positive on Z, we can again take h ≡ 1

but now switch to ‖f‖ = maxz∈Z |f(z)|, so that (33) becomes

r(Lϕ) = lim
n→∞

(
max
z∈Z

Lnϕ 1(z)

)1/n

= lim
n→∞

(
max
z∈Z

Ez

n∏
t=1

ϕt

)1/n

. (34)

Since r(Lϕ) = Gϕ and Gϕ < 1, the claim in Lemma A.1 now follows. �

Appendix B. Proof of Section 2 Results

Proof of Proposition 2.1. Pick any a ≥ 0 and z ∈ Z. Since ct = Yt for all t is

dominated by a feasible consumption path, monotonicity of u and the law of iterated

expectations give

max Ea,z

∞∑
t=0

t∏
i=0

βiu(ct) ≥ Ez
∞∑
t=0

t∏
i=0

βiu(Yt) =
∞∑
t=0

Ez

t∏
i=0

βih(Zt),

where h(Zt) := EZtu(Y ) and the monotone convergence theorem has been employed

to pass the expectation through the sum. In view of (32) and β0 = 1, we then have

max Ea,z

∞∑
t=0

t∏
i=0

βiu(ct) ≥
∞∑
t=0

Ltβ h(z). (35)
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By the assumed almost sure positivity of βt and the irreducibility of P , the matrix Lβ
is irreducible. Hence, by the Perron–Frobenius theorem, we can choose an everywhere

positive eigenfunction e such that Lβe = r(Lβ)e. By the everywhere positivity of

u(Yt), the function h is everywhere positive on Z, and hence we can choose α > 0

such that eα := αe is less than h pointwise on Z. We then have

∞∑
t=0

Ltβ h(z) ≥
∞∑
t=0

Ltβ eα(z) = α

∞∑
t=0

r(Lβ)t e(z).

By lemma 4.1 we know that r(Lβ) ≥ 1, and since α and e are positive, this expres-

sion is infinite. Returning to (35), we see that the value function is infinite at our

arbitrarily chosen pair (a, z). �

For the rest of this section we suppose that Assumptions 2.1–2.3 hold.

Lemma B.1. M1 :=
∑∞

t=0 maxz∈ZEz
∏t

i=1 βi and M2 :=
∑∞

t=0 maxz∈ZEz
∏t

i=1 βiRi,

are finite, as are the constants M3 = maxz∈ZEzY and M4 = maxz∈ZEzu
′(Y ).

Proof. That M1 and M2 are finite follows directly from Lemma A.1, with ϕt = βt and

ϕt = βtRt respectively. Regarding M3, Assumption 2.3 states that EY <∞. By the

Law of Iterated Expectations, we can write this as
∑

z∈ZEzY πZ(z) < ∞. As {Zt}
is irreducible, we know that πZ is positive everywhere on Z. Hence, M3 < ∞ must

hold. The proof of M4 <∞ is similar. �

Lemma B.2. For the maximal asset path {ãt} defined by

ãt+1 = Rt+1 ãt + Yt+1 and (ã0, z̃0) = (a, z) given, (36)

we have, for each (a, z) ∈ S0, that M(a, z) :=
∑∞

t=0Ea,z

∏t
i=0 βi ãt <∞.

Proof. Iterating backward on (36), we can show that ãt =
∏t

i=1Ri a+
∑t

j=1 Yj
∏t

i=j+1Ri.

Taking expectation yields

Ea,z

t∏
i=0

βi ãt = Ez

t∏
i=1

βiRi a+
t∑

j=1

Ez

t∏
i=j+1

βiRi

j∏
k=0

βk Yj.
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Then the Monotone Convergence Theorem and the Markov property imply that

M(a, z) =
∞∑
t=0

Ez

t∏
i=1

βiRi a+
∞∑
t=0

t∑
j=1

Ez

t∏
i=j+1

βiRi

j∏
k=0

βk Yj

= Ez

∞∑
t=0

t∏
i=1

βiRi a+
∞∑
j=1

∞∑
i=0

Ez

j∏
k=0

βk Yj

i∏
`=1

βj+`Rj+`

=
∞∑
t=0

Ez

t∏
i=1

βiRi a+
∞∑
j=1

Ez

j∏
k=0

βk Yj EZj

∞∑
i=0

i∏
`=1

β`R`.

By Lemma B.1, we now have, for all (a, z) ∈ S0,

M(a, z) ≤M2 a+M2

∞∑
t=1

Ez

t∏
i=0

βiYt = M2 a+M2

∞∑
t=1

Ez

t∏
i=0

βiEZtY.

Applying Lemma B.1 again gives M(a, z) <∞, as was to be shown. �

Proposition B.1. The value Vc(a, z) in (8) is well-defined in {−∞} ∪R.

Proof. By the assumptions on the utility function, there exists a constant B ∈ R+

such that u(c) ≤ c + B, and hence Vc(a, z) ≤ Ea,z
∑∞

t=0

∏t
i=0 βi u(ãt) ≤ M(a, z) +

B
∑∞

t=0Ez

∏t
i=0 βi. The last term is finite by Lemma A.1. �

Proof of Thoerem 2.1. The proof is a long but relatively straightforward extension of

Theorem 1 of Benhabib et al. (2015) and thus omitted. A full proof is available from

the authors upon request. �

Proposition B.2. (C , ρ) is a complete metric space.

Proof. The proof is a straightforward extension of Proposition 4.1 of Li and Stachurski

(2014) and thus omitted. A full proof is available from the authors upon request. �

Proof of Proposition 2.2. Let c be a policy in C satisfying (10). To show that any

asset path generated by c satisfies the transversality condition (11), observe that, by

condition (12), we have

c ∈ C =⇒ ∃M ∈ R+ s.t. u′(a) ≤ (u′ ◦ c)(a, z) ≤ u′(a) +M, ∀(a, z) ∈ S0. (37)

∴ Ea,z

t∏
i=0

βi (u
′ ◦ c)(at, Zt)at ≤ Ea,z

t∏
i=0

βi u
′(at)at +M Ea,z

t∏
i=0

βi at. (38)
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Regarding the first term on the right hand side of (38), fix A > 0 and observe that

u′(at)at = u′(at)at1{at ≤ A}+ u′(at)at1{at > A}

≤ Au′(at) + u′(A)at ≤ Au′(Yt) + u′(A)ãt

with probability one, where ãt is the maximal path defined in (36). We then have

Ea,z

t∏
i=0

βi u
′(at)at ≤ AEz

t∏
i=0

βi u
′(Yt) + u′(A)Ea,z

t∏
i=0

βi ãt. (39)

By Lemma B.1, we have

AEz

t∏
i=0

βi u
′(Yt) = AEz

t∏
i=0

βiEZtu
′(Y ) ≤M4AEz

t∏
i=0

βi,

and the last expression converges to zero as t→∞ by Lemma A.1. The second term

in (39) also converges to zero by Lemma B.2. Hence Ea,z
∏t

i=0 βi u
′(at)at → 0 as

t→∞, which, combined with (38) and another application of Lemma B.2, gives our

desired result. �

Proposition B.3. For all c ∈ C and (a, z) ∈ S0, there exists a unique ξ ∈ (0, a] that

solves (14).

Proof. Fix c ∈ C and (a, z) ∈ S0. Because c ∈ C , the map ξ 7→ ψc(ξ, a, z) is

increasing. Since ξ 7→ u′(ξ) is strictly decreasing, the equation (14) can have at most

one solution. Hence uniqueness holds.

Existence follows from the intermediate value theorem provided we can show that

(a) ξ 7→ ψc(ξ, a, z) is a continuous function,

(b) ∃ξ ∈ (0, a] such that u′(ξ) ≥ ψc(ξ, a, z), and

(c) ∃ξ ∈ (0, a] such that u′(ξ) ≤ ψc(ξ, a, z).

For part (a), it suffices to show that

g(ξ) := Ezβ̂R̂ (u′ ◦ c) [R̂(a− ξ) + Ŷ , Ẑ]

is continuous on (0, a]. To this end, fix ξ ∈ (0, a] and ξn → ξ. By (37) we have

β̂R̂ (u′ ◦ c) [R̂ (a− ξ) + Ŷ , Ẑ] ≤ β̂R̂ (u′ ◦ c) (Ŷ , Ẑ) ≤ β̂R̂u′(Ŷ ) + β̂R̂M. (40)

The last term is integrable, as follows easily from Lemma B.1. Hence the domi-

nated convergence theorem applies. From this fact and the continuity of c, we obtain

g(ξn)→ g(ξ). Hence, ξ 7→ ψc(ξ, a, z) is continuous.
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Part (b) clearly holds, since u′(ξ)→∞ as ξ → 0 and ξ 7→ ψc(ξ, a, z) is increasing and

always finite (since it is continuous as shown in the previous paragraph). Part (c) is

also trivial (just set ξ = a). �

Proposition B.4. We have Tc ∈ C for all c ∈ C .

Proof. Fix c ∈ C and let g (ξ, a, z) := Ezβ̂R̂ (u′ ◦ c) [R̂ (a− ξ) + Ŷ , Ẑ].

Step 1. We show that Tc is continuous. To apply a standard fixed point parametric

continuity result such as Theorem B.1.4 of Stachurski (2009), we first show that ψc
is jointly continuous on the set G defined in (15). This will be true if g is jointly

continuous on G. For any {(ξn, an, zn)} and (ξ, a, z) in G with (ξn, an, zn)→ (ξ, a, z),

we need to show that g(ξn, an, zn)→ g(ξ, a, z). To that end, we define

h1(ξ, a, Ẑ, ε̂, ζ̂, η̂), h2(ξ, a, Ẑ, ε̂, ζ̂, η̂) := β̂R̂[u′(Ŷ ) +M ]± β̂R̂ (u′ ◦ c) [R̂ (a− ξ) + Ŷ , Ẑ],

where β̂ := β(Ẑ, ε̂), R̂ := R(Ẑ, ζ̂) and Ŷ := Y (Ẑ, η̂) as defined in (5). Then h1 and

h2 are continuous in (ξ, a, Ẑ) by the continuity of c and nonnegative by (40).

By Fatou’s lemma and Theorem 1.1 of Feinberg et al. (2014),∫∫∫ ∑
ẑ∈Z

hi(ξ, a, ẑ, ε̂, ζ̂, η̂)P (z, ẑ)πε(dε̂)πζ(dζ̂)πη(dη̂)

≤
∫∫∫

lim inf
n→∞

∑
ẑ∈Z

hi(ξn, an, ẑ, ε̂, ζ̂, η̂)P (zn, ẑ)πε(dε̂)πζ(dζ̂)πη(dη̂)

≤ lim inf
n→∞

∫∫∫ ∑
ẑ∈Z

hi(ξn, an, ẑ, ε̂, ζ̂, η̂)P (zn, ẑ)πε(dε̂)πζ(dζ̂)πη(dη̂).

This implies that

lim inf
n→∞

(
±Ezn β̂R̂ (u′ ◦ c) [R̂ (an − ξn) + Ŷ , Ẑ]

)
≥
(
±Ezβ̂R̂ (u′ ◦ c) [R̂ (a− ξ) + Ŷ , Ẑ]

)
.

The function g is then continuous, since the above inequality is equivalent to the

statement lim infn→∞ g(ξn, an, zn) ≥ g(ξ, a, z) ≥ lim supn→∞ g(ξn, an, zn). Hence, ψc
is continuous on G, as was to be shown. Moreover, since ξ 7→ ψc(ξ, a, z) takes values

in the closed interval I(a, z) := [u′(a), u′(a) +Ezβ̂R̂(u′(Ŷ ) +M)], and the correspon-

dence (a, z) 7→ I(a, z) is nonempty, compact-valued and continuous, Theorem B.1.4

of Stachurski (2009) then implies that Tc is continuous on S0.

Step 2. We show that Tc is increasing in a. Suppose that for some z ∈ Z and

a1, a2 ∈ (0,∞) with a1 < a2, we have ξ1 := Tc(a1, z) > Tc(a2, z) =: ξ2. Since c
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is increasing in a by assumption, ψc is increasing in ξ and decreasing in a. Then

u′(ξ1) < u′(ξ2) = ψc(ξ2, a2, z) ≤ ψc(ξ1, a1, z) = u′(ξ1). This is a contradiction.

Step 3. We have shown in Proposition B.3 that Tc(a, z) ∈ (0, a] for all (a, z) ∈ S0.

Step 4. We show that ‖u′ ◦ (Tc)− u′‖ <∞. Since u′[Tc(a, z)] ≥ u′(a), we have

|u′[Tc(a, z)]− u′(a)| = u′[Tc(a, z)]− u′(a)

≤ Ezβ̂R̂ (u′ ◦ c) (R̂[a− Tc(a, z)] + Ŷ , Ẑ) ≤ Ezβ̂R̂[u′(Ŷ ) +M ]

for all (a, z) ∈ S0. The right hand side is easily shown to be finite via Lemma B.1. �

To prove Theorem 2.2, let H be all continuous functions h : S0 → R that is decreasing

in its first argument and (a, z) 7→ h(a, z)− u′(a) is bounded and nonnegative. Given

h ∈H , let T̃ h be the function mapping (a, z) ∈ S0 into the κ that solves

κ = max{Ez β̂R̂ h(R̂ [a− (u′)−1(κ)] + Ŷ , Ẑ), u′(a)}. (41)

Moreover, consider the bijection H : C →H defined by Hc := u′ ◦ c.

Lemma B.3. The operator T̃ : H →H and satisfies T̃H = HT on C .

Proof. Pick any c ∈ C and (a, z) ∈ S0. Let ξ := Tc(a, z), then ξ solves

u′(ξ) = max{Ez β̂R̂ (u′ ◦ c) [R̂ (a− ξ) + Ŷ , Ẑ], u′(a)}. (42)

We need to show that HTc and T̃Hc evaluate to the same number at (a, z). In other

words, we need to show that u′(ξ) is the solution to

κ = max{Ez β̂R̂ (u′ ◦ c) (R̂ [a− (u′)−1(κ)] + Ŷ , Ẑ), u′(a)}.

But this is immediate from (42). Hence, we have shown that T̃H = HT on C . Since

H : C → H is a bijection, we have T̃ = HTH−1. Since in addition T : C → C by

Proposition B.4, we have T̃ : H →H . This concludes the proof. �

Lemma B.4. T̃ is order preserving on H . That is, T̃ h1 ≤ T̃ h2 for all h1, h2 ∈ H

with h1 ≤ h2.

Proof. Let h1, h2 be functions in H with h1 ≤ h2. Suppose to the contrary that there

exists (a, z) ∈ S0 such that κ1 := T̃ h1(a, z) > T̃h2(a, z) =: κ2. Since functions in H
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are decreasing in the first argument, we have

κ1 = max{Ez β̂R̂ h1(R̂ [a− (u′)−1(κ1)] + Ŷ , Ẑ), u′(a)}

≤ max{Ez β̂R̂ h2(R̂ [a− (u′)−1(κ1)] + Ŷ , Ẑ), u′(a)}

≤ max{Ez β̂R̂ h2(R̂ [a− (u′)−1(κ2)] + Ŷ , Ẑ), u′(a)} = κ2.

This is a contradiction. Hence, T̃ is order preserving. �

Lemma B.5. There exists an n ∈ N and θ < 1 such that T̃ n is a contraction mapping

of modulus θ on (H , d∞).

Proof. Since T̃ is order preserving and H is closed under the addition of nonnegative

constants, based on Blackwell (1965), it remains to verify the existence of n ∈ N and

θ < 1 such that T̃ n(h+ γ) ≤ T̃ nh+ θγ for all h ∈H and γ ≥ 0. By Lemma A.1 and

Assumption 2.2, it suffices to show that for all k ∈ N and (a, z) ∈ S0, we have

T̃ k(h+ γ)(a, z) ≤ T̃ kh(a, z) + γEz

k∏
i=1

βiRi. (43)

Fix h ∈H , γ ≥ 0, and let hγ(a, z) := h(a, z) + γ. By the definition of T̃ , we have

T̃ hγ(a, z) = max{Ez β̂R̂ hγ(R̂ [a− (u′)−1(T̃ hγ)(a, z)] + Ŷ , Ẑ), u′(a)}

≤ max{Ez β̂R̂ h(R̂ [a− (u′)−1(T̃ hγ)(a, z)] + Ŷ , Ẑ), u′(a)}+ γEzβ1R1

≤ max{Ez β̂R̂ h(R̂ [a− (u′)−1(T̃ h)(a, z)] + Ŷ , Ẑ), u′(a)}+ γEzβ1R1.

Here, the first inequality is elementary and the second is due to the fact that h ≤ hγ
and T̃ is order preserving. Hence, T̃ (h+γ)(a, z) ≤ T̃ h(a, z)+γEzβ1R1 and (43) holds

for k = 1. Suppose (43) holds for arbitrary k. It remains to show that it holds for

k + 1. For z ∈ Z, define f(z) := γEzβ1R1 · · · βkRk. By the induction hypothesis, the

monotonicity of T̃ and the Markov property,

T̃ k+1hγ(a, z) = max{Ez β̂R̂ (T̃ khγ)(R̂ [a− (u′)−1(T̃ k+1hγ)(a, z)] + Ŷ , Ẑ), u′(a)}

≤ max{Ez β̂R̂ (T̃ kh+ f)(R̂ [a− (u′)−1(T̃ k+1hγ)(a, z)] + Ŷ , Ẑ), u′(a)}

≤ max{Ez β̂R̂ (T̃ kh)(R̂ [a− (u′)−1(T̃ k+1hγ)(a, z)] + Ŷ , Ẑ), u′(a)}

+Ez β1R1f(Z1)

≤ max{Ez β̂R̂ (T̃ kh)(R̂ [a− (u′)−1(T̃ k+1h)(a, z)] + Ŷ , Ẑ), u′(a)}

+ γEz β1R1EZ1β1R1 · · · βkRk

= T̃ k+1h(a, z) + γEz β1R1 · · · βk+1Rk+1.
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Hence, (43) is verified by induction. This concludes the proof. �

Proof of Theorem 2.2. Let n and θ be as in Lemma B.5. In view of Propositions 2.2,

B.2 and B.4, to show that T n is a contraction and verify claims (1)–(3) of Theo-

rem 2.2, based on the Banach contraction mapping theorem, it suffices to show that

ρ(T nc, T nd) ≤ θρ(c, d) for all c, d ∈ C . To this end, pick any c, d ∈ C . Note that

the topological conjugacy result established in Lemma B.3 implies that T̃ = HTH−1.

Hence, T̃ n = (HTH−1) · · · (HTH−1) = HT nH−1 and T̃ nH = HT n. By the definition

of ρ and the contraction property established in Lemma B.5,

ρ(T nc, T nd) = d∞(HT nc,HT nd) = d∞(T̃ nHc, T̃ nHd) ≤ θd∞(Hc,Hd) = θρ(c, d).

Hence, T n is a contraction and claims (1)–(3) are verified. �

Our next goal is to prove Proposition 2.3. To begin with, we define

C0 = {c ∈ C : a 7→ a− c(a, z) is increasing for all z ∈ Z} .

Lemma B.6. C0 is a closed subset of C , and Tc ∈ C0 for all c ∈ C0.

Proof. To see that C0 is closed, for a given sequence {cn} in C0 and c ∈ C with

ρ(cn, c)→ 0, we need to show that c ∈ C0. This obviously holds since a 7→ a−cn(a, z)

is increasing for all n, and, in addition, ρ(cn, c) → 0 implies that cn(a, z) → c(a, z)

for all (a, z) ∈ S0.

Fix c ∈ C0. We now show that ξ := Tc ∈ C0. Since ξ ∈ C by Proposition B.4, it

remains to show that a 7→ a − ξ(a, z) is increasing. Suppose the claim is false, then

there exist z ∈ Z and a1, a2 ∈ (0,∞) such that a1 < a2 and a1−ξ(a1, z) > a2−ξ(a2, z).

Since a1 − ξ(a1, z) ≥ 0, a2 − ξ(a2, z) ≥ 0 and ξ(a1, z) ≤ ξ(a2, z) by Proposition B.4,

we have ξ(a1, z) < a1 and ξ(a1, z) < ξ(a2, z). However, based on the property of the

time iteration operator, we then have

(u′ ◦ ξ)(a1, z) = Ezβ̂R̂(u′ ◦ c)(R̂ [a1 − ξ(a1, z)] + Ŷ , Ẑ)

≤ Ezβ̂R̂(u′ ◦ c)(R̂ [a2 − ξ(a2, z)] + Ŷ , Ẑ) ≤ (u′ ◦ ξ)(a2, z),

which implies that ξ(a1, z) ≥ ξ(a2, z). This is a contradiction. Hence, a 7→ a− ξ(a, z)
is increasing, and T is a self-map on C0. �

Proof of Proposition 2.3. Since T maps elements of the closed subset C0 into itself by

Lemma B.6, Theorem 2.2 implies that c∗ ∈ C0. Hence, the stated claims hold. �
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Proof of Proposition 2.4. Let Tj be the time iteration operator for the income process

j established in Proposition B.4. It suffices to show T1c ≤ T2c for all c ∈ C . To see

this, note that by Lemma B.4, we have Tjc1 ≤ Tjc2 whenever c1 ≤ c2. Therefore if

T1c ≤ T2c for all c ∈ C , we obtain T1c1 ≤ T1c2 ≤ T2c2. Iterating this starting from

any c ∈ C , by Theorem 2.2, it follows that c∗1 = limn→∞(T1)nc ≤ limn→∞(T2)nc = c∗2,

completing the proof.

To show that T1c ≤ T2c for any c ∈ C , take any (a, z) ∈ S0 and define ξj = (Tjc)(a, z).

To show ξ1 ≤ ξ2, suppose on the contrary that ξ1 > ξ2. Since c is increasing in a and

u′′ < 0 (hence u′ is decreasing), it follows from the definition of the time iteration

operator in (14)–(16), Y1 ≤ Y2, u′′ < 0 and the monotonicity of c ∈ C that

u′(ξ2) > u′(ξ1) = max{Ez β̂R̂ (u′ ◦ c)[R̂(a− ξ1) + Ŷ1, Ẑ], u′(a)}

≥ max{Ez β̂R̂ (u′ ◦ c)[R̂(a− ξ2) + Ŷ2, Ẑ], u′(a)} = u′(ξ2),

which is a contradiction. �

To prove Proposition 2.5, we need several lemmas.

Lemma B.7. For all c ∈ C0, there exists a threshold āc(z) such that Tc(a, z) = a if

and only if a ≤ āc(z). In particular, there exists a threshold ā(z) such that c∗(a, z) = a

if and only if a ≤ ā(z).

Proof. Recall that, for all c ∈ C0, ξ(a, z) := Tc(a, z) solves

(u′ ◦ ξ) (a, z) = max{Ez β̂R̂ (u′ ◦ c) (R̂ [a− ξ(a, z)] + Ŷ , Ẑ), u′(a)}. (44)

For each z ∈ Z and c ∈ C0, define

āc(z) := (u′)
−1

[Ez β̂R̂ (u′ ◦ c) (Ŷ , Ẑ)] and ā(z) := āc∗(z). (45)

To prove the first claim, by Lemma B.6, it suffices to show that ξ(a, z) < a implies

a > āc(z). This obviously holds since in view of (44), the former implies that

u′(a) < Ez β̂R̂ (u′ ◦ c) (R̂ [a− ξ(a, z)] + Ŷ , Ẑ) ≤ Ez β̂R̂ (u′ ◦ c) (Ŷ , Ẑ) = u′[āc(z)],

which then yields a > āc(z). The second claim follows immediately from the first

claim and the fact that c∗ ∈ C0 is the unique fixed point of T in C . �

Consider a subset C1 defined by C1 := {c ∈ C0 : a 7→ c(a, z) is concave for all z ∈ Z}.

Lemma B.8. C1 is a closed subset of C0 and C , and, Tc ∈ C1 for all c ∈ C1.
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Proof. The first claim is immediate because limits of concave functions are concave.

To prove the second claim, fix c ∈ C1. We have Tc ∈ C0 by Lemma B.6. It remains to

show that a 7→ ξ(a, z) := Tc(a, z) is concave for all z ∈ Z. Given z ∈ Z, Lemma B.7

implies that ξ(a, z) = a for a ≤ āc(z) and that ξ(a, z) < a for a > āc(z). Since in

addition a 7→ ξ(a, z) is continuous and increasing, to show the concavity of ξ with

respect to a, it suffices to show that a 7→ ξ(a, z) is concave on (āc(z),∞).

Suppose there exist some z ∈ Z, α ∈ [0, 1], and a1, a2 ∈ (āc(z),∞) such that

ξ ((1− α)a1 + αa2, z) < (1− α)ξ(a1, z) + αξ(a2, z). (46)

Let h(a, z, ω̂) := R̂ [a− ξ(a, z)] + Ŷ , where ω̂ := (R̂, Ŷ ). Then by Lemma B.7 and

noting that consumption is interior, we have

(u′ ◦ ξ) ((1− α)a1 + αa2, z) = Ez β̂R̂ (u′ ◦ c) {h[(1− α)a1 + αa2, z, ω̂], Ẑ}

≤ Ez β̂R̂ (u′ ◦ c) [(1− α)h(a1, z, ω̂) + αh(a2, z, ω̂), Ẑ].

Using condition (17) then yields

ξ((1− α)a1 + αa2, z) ≥ (u′)−1{Ez β̂R̂(u′ ◦ c)[(1− α)h(a1, z, ω̂) + αh(a2, z, ω̂), Ẑ]}

≥ (1− α)(u′)−1{Ez β̂R̂(u′ ◦ c)[h(a1, z, ω̂), Ẑ]}+ α(u′)−1{Ez β̂R̂(u′ ◦ c)[h(a2, z, ω̂), Ẑ]}

= (1− α)(u′)−1{(u′ ◦ ξ)(a1, z)}+ α(u′)−1{(u′ ◦ ξ)(a2, z)} = (1− α)ξ(a1, z) + αξ(a2, z),

which contradicts (46). Hence, a 7→ ξ(a, z) is concave for all z ∈ Z. �

Proof of Proposition 2.5. By Theorem 2.2, T : C → C is a contraction mapping with

unique fixed point c∗. Since C1 is a closed subset of C and TC1 ⊂ C1 by Lemma B.8,

we know that c∗ ∈ C1. The first claim is verified. Regarding the second claim, note

that c∗ ∈ C1 implies that a 7→ c∗(a, z) is increasing and concave for all z ∈ Z. Hence,

a 7→ c∗(a, z)/a is a decreasing function for all z ∈ Z. Since 0 ≤ c∗(a, z) ≤ a for all

(a, z) ∈ S0, α(z) := lima→∞ c
∗(a, z)/a is well-defined and α(z) ∈ [0, 1]. �

Proof of Remark 2.1. For each c in C concave in its first argument, let hc(x, ω̂) :=

c(R̂x + Ŷ , ẑ), where ω̂ := (R̂, Ŷ , ẑ). Then x 7→ hc(x, ω̂) is concave. Based on the

generalized Minkowski’s inequality (see, e.g., Hardy et al. (1952), page 146, theorem
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198), we have

[Ez β̂R̂ hc(αx1 + (1− α)x2, ω̂)−γ]−
1
γ ≥ {Ez β̂R̂ [αhc(x1, ω̂) + (1− α)hc(x2, ω̂)]−γ}−

1
γ

= {Ez[α(β̂R̂)−
1
γ hc(x1, ω̂) + (1− α)(β̂R̂)−

1
γ hc(x2, ω̂) ]−γ}−

1
γ

≥ (Ez[α(β̂R̂)−
1
γ hc(x1, ω̂)]−γ)−

1
γ + (Ez[(1− α)(β̂R̂)−

1
γ hc(x2, ω̂)]−γ)−

1
γ

= α[Ez β̂R̂ hc(x1, ω̂)−γ]−
1
γ + (1− α)[Ez β̂R̂ hc(x2, ω̂)−γ]−

1
γ ,

Since u′(c) = c−γ, the above inequality implies that condition (17) holds. �

To prove Proposition 2.6, let s̄ be as in (19) and define

C2 := {c ∈ C : c(a, z) ≥ (1− s̄)a for all (a, z) ∈ S0} . (47)

Lemma B.9. C2 is a closed subset of C , and Tc ∈ C2 for all c ∈ C2.

Proof. To see that C2 is closed, for a given sequence {cn} in C2 and c ∈ C with

ρ(cn, c) → 0, we need to verify that c ∈ C2. This obviously holds since cn(a, z)/a ≥
1 − s̄ for all n and (a, z) ∈ S0, and, on the other hand, ρ(cn, c) → 0 implies that

cn(a, z)→ c(a, z) for all (a, z) ∈ S0.

We next show that T is a self-map on C2. Fix c ∈ C2. We have Tc ∈ C since T is

a self-map on C . It remains to show that ξ := Tc satisfies ξ(a, z) ≥ (1 − s̄)a for all

(a, z) ∈ S0. Suppose ξ(a, z) < (1− s̄)a for some (a, z) ∈ S0. Then

u′((1− s̄)a) < (u′ ◦ ξ)(a, z) = max{Ez β̂R̂ (u′ ◦ c) (R̂ [a− ξ(a, z)] + Ŷ , Ẑ), u′(a)}.

Since u′((1− s̄)a) > u′(a) and c ∈ C2, this implies that

u′((1− s̄)a) < Ez β̂R̂ (u′ ◦ c) (R̂ [a− ξ(a, z)] + Ŷ , Ẑ)

≤ Ez β̂R̂ u′ {(1− s̄)R̂ [a− ξ(a, z)] + (1− s̄)Ŷ }

≤ Ez β̂R̂ u′ [(1− s̄)R̂s̄a+ (1− s̄)Ŷ ] ≤ Ez β̂R̂ u′ [R̂s̄(1− s̄)a],

which contradicts (19) since ((1− s̄)a, z) ∈ S0. As a result, ξ(a, z) ≥ (1− s̄)a for all

(a, z) ∈ S0 and we conclude that Tc ∈ C2. �

Proof of Proposition 2.6. We have shown in Theorem 2.2 that T is a contraction

mapping on the complete metric space (C , ρ), with unique fixed point c∗. Since in

addition C2 is a closed subset of C and TC2 ⊂ C2 by Lemma B.9, we know that

c∗ ∈ C2. The stated claim is verified. �
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Appendix C. Proof of Section 3 Results

As before, Assumptions 2.1–2.3 are in force. Notice that Assumption 2.2, Assump-

tion 3.1 and Lemma A.1 imply existence of an n in N such that

θ := max
z∈Z

Ez

n∏
t=1

βtRt < 1 and γ := s̄n max
z∈Z

Ez

n∏
t=1

Rt < 1. (48)

Lemma C.1. For all (a, z) ∈ S, we have supt≥0Ea,z at <∞.

Proof. Since c∗(0, z) = 0, Proposition 2.6 implies that c∗(a, z) ≥ (1 − s̄)a for all

(a, z) ∈ S. For all t ≥ 1, we have t = kn+ j in general, where the integers k ≥ 0 and

j ∈ {0, 1, . . . , n− 1}. Using these facts and (4), we have:

at ≤ s̄tRt · · ·R1a+ s̄t−1Rt · · ·R2Y1 + · · ·+ s̄RtYt−1 + Yt

= s̄kn+jRkn+j · · ·R1a+

j∑
`=1

s̄kn+j−`Rkn+j · · ·R`+1Y`

+
k∑

m=1

n∑
`=1

s̄mn−`Rkn+j · · ·R(k−m)n+j+`+1Y(k−m)n+j+`

with probability one. Taking expectations of the above while noting that M0 :=

max1≤`≤n, z∈ZEz
∏`

t=1Rt <∞ by Assumption 3.1 and Lemma A.1, we have

Ea,zat ≤ γks̄jEzRj · · ·R1a+ γk
j∑
`=1

s̄j−`EzRj · · ·R`+1Y`

+
k−1∑
m=0

γm
n∑
`=1

s̄n−`EzR(k−m)n+j · · ·R(k−m−1)n+j+`+1Y(k−m)n+j+`

≤ γkM0a+ γkM0

j∑
`=1

EzY` +
k−1∑
m=0

γmM0

n∑
`=1

EzY(k−m−1)n+j+`

≤M0a+M0M3n+
∞∑
m=0

γmM0M3n <∞.

or all (a, z) ∈ S and t ≥ 0. Here we have used M3 in Lemma B.1 and the Markov

property. Hence, supt≥0Ea,z at <∞ for all (a, z) ∈ S, as was claimed. �

A function w∗ : S → R+ is called norm-like if all its sublevel sets (i.e., sets of the

form {x ∈ S : w(x) ≤ b}, b ∈ R+) are precompact in S (i.e., any sequence in a given

sublevel set has a subsequence that converges to a point of S).
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Proof of Theorem 3.1. Based on Lemma D.5.3 of Meyn and Tweedie (2009), a sto-

chastic kernel Q is bounded in probability if and only if for all x ∈ S, there exists a

norm-like function w∗x : S → R+ such that the (Q, x)-Markov process {Xt}t≥0 satis-

fies lim supt→∞Ex [w∗x(Xt)] < ∞. Fix (a, z) ∈ S. Since Z is finite, P is bounded

in probability. Hence, there exists a norm-like function w : Z → R+ such that

lim supt→∞Ezw(Zt) < ∞. Then w∗ : S → R+ defined by w∗(a0, Z0) := a0 + w(Z0)

is a norm-like function on S. The stochastic kernel Q is then bounded in prob-

ability since Lemma C.1 implies that lim supt→∞Ea,z w
∗(at, Zt) ≤ supt≥0Ea,z at +

lim supt→∞Ez w(Zt) <∞. Regarding existence of stationary distribution, since P is

Feller (due to the finiteness of Z), whenever zn → z, the product measure satisfies

P (zn, ·)⊗ πζ ⊗ πη
w−→ P (z, ·)⊗ πζ ⊗ πη.

Since in addition c∗ is continuous, a simple application of the generalized Fatou’s

lemma of Feinberg et al. (2014) (Theorem 1.1) shows that the stochastic kernel Q is

Feller. Moreover, since Q is bounded in probability, based on the Krylov-Bogolubov

theorem (see, e.g., Meyn and Tweedie (2009), Proposition 12.1.3 and Lemma D.5.3),

Q admits at least one stationary distribution. �

Lemma C.2. The borrowing constraint binds in finite time with positive probability.

That is, for all (a, z) ∈ S, we have Pa,z (∪t≥0{ct = at}) > 0.

Proof. The claim holds trivially when a = 0. Suppose the claim does not hold on S0

(recall that S0 = S\{0}), then Pa,z (∩t≥0{ct < at}) = 1 for some (a, z) ∈ S0, i.e., the

borrowing constraint never binds with probability one. Hence,

Pa,z

{
(u′ ◦ c∗)(at, Zt) = E

[
βt+1Rt+1(u′ ◦ c∗)(at+1, Zt+1)

∣∣Ft

]}
= 1

for all t ≥ 0. Then we have

(u′ ◦ c∗) (a, z) = Ea,z β1R1 · · · βtRt (u′ ◦ c∗) (at, Zt)

≤ Ea,z β1R1 · · · βtRt [u′(at) +M ] ≤ Ez β1R1 · · · βtRt [u′(Yt) +M ] (49)

for all t ≥ 1. Let n and θ be defined by (48). Let t = kn + 1. Based on the Markov

property and Lemma B.1, as k →∞,

Ezβ1R1 · · · βtRt = Ezβ1R1 · · · βt−1Rt−1EZt−1β1R1

≤
(

max
z∈Z

Ezβ1R1

)
(Ezβ1R1 · · · βnkRnk) ≤

(
max
z∈Z

Ezβ1R1

)
θk → 0.



38

Similarly, as k →∞,

Ez β1R1 · · · βtRtu
′(Yt) = Ez β1R1 · · · βt−1Rt−1EZt−1 [β1R1u

′(Y1)]

≤
[
max
z∈Z

Ezβ̂R̂u
′(Ŷ )

]
Ezβ1R1 · · · βnkRnk ≤

[
max
z∈Z

Ezβ̂R̂u
′(Ŷ )

]
θk → 0.

Letting k →∞. (49) then implies that (u′ ◦ c∗) (a, z) ≤ 0, contradicted with the fact

that u′ > 0. Thus, we must have Pa,z (∪t≥0{ct = at}) > 0 for all (a, z) ∈ S. �

Our next goal is to prove Theorem 3.2. In proofs we apply the theory of Meyn and

Tweedie (2009). Important definitions (their information in the textbook) include:

ψ-irreducibility (Section 4.2), small set (page 102), strong aperiodicity (page 114),

petite set (page 117), Harris chain (page 199), and positivity (page 230).

Recall that Rm paired with its Euclidean topology is a second countable topological

space (i.e., its topology has a countable base). Since R+ and Z are respectively

Borel subsets of R and Rm paired with the relative topologies, they are also second

countable. Hence, S := R+ × Z satisfies B(S) = B(R+)⊗B(Z) (see, e.g., page 149,

Theorem 4.44 of Aliprantis and Border (2006)). Recall (22). With slight abuse of

notation, in proofs, we use f to denote the density of {Yt} in both cases (Y1) and

(Y2) and write dy = ν(dy), where ν is the related measure. Specifically, ν is the

Lebesgue measure when (Y2) holds. Moreover, Let ϑ be the counting measure.

Recall z̄ ∈ Z and the greatest lower bound y` ≥ 0 of the support of {Yt} given by

Assumption 3.2. Let p̄ := P (z̄, z̄). Then p̄ > 0 by Assumption 3.2.

Lemma C.3. P(a,z̄) {∪t≥0 [{ct = at} ∩ (∩ti=0{Zi = z̄})]} > 0 for all a ∈ (0,∞).

Proof. Fix a ∈ (0,∞). If a ≤ ā(z̄), the claim holds trivially by Lemma B.7. Now

consider the case a > ā(z̄). Suppose P(a,z̄) {∪t≥0 [{ct = at} ∩ (∩ti=0{Zi = z̄})]} = 0.

Then, based on the De Morgan’s law, we have

P(a,z̄)

{
∩t≥0

[
{ct < at} ∪

(
∪ti=0{Zi 6= z̄}

)]}
= 1.

∴ P(a,z̄)

{
{ct < at} ∪

(
∪ti=0{Zi 6= z̄}

)}
= 1 for all t ∈ N.

∴ P(a,z̄)

{
{ck < ak} ∪

(
∪ti=0{Zi 6= z̄}

)}
= 1 for all k, t ∈ N with k ≤ t.

∴ P(a,z̄)

{(
∩ti=0{ci < ai}

)
∪
(
∪ti=0{Zi 6= z̄}

)}
= 1 for all t ∈ N.

Note that the set 4(t) := (∩ti=0{ci < ai}) ∪ (∪ti=0{Zi 6= z̄}) can be written as

4(t) = 41(t) ∪42(t), where 41(t) ∩42(t) = ∅,

41(t) :=
(
∩ti=0{ci < ai}

)
∩
(
∩ti=0{Zi = z̄}

)
and 42(t) := ∪ti=0{Zi 6= z̄}.
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Assumption 3.2 then implies that, for all t ≥ 0,

P(a,z̄){41(t)} = 1−Pz̄{42(t)} = Pz̄

{
∩ti=0{Zi = z̄}

}
= p̄t > 0.

Let n and θ be defined by (48) and let t = kn+1. Similar to the proof of Lemma B.7,

we can show that, with probability p̄t > 0,

(u′ ◦ c∗)(a, z̄) ≤ θk
[
max
z∈Z

Ezβ̂R̂u
′(Ŷ ) +M max

z∈Z
Ezβ̂R̂

]
for some constant M ∈ R+. Since θ ∈ (0, 1) and (u′ ◦ c∗)(a, z̄) > 0, Lemma B.1

implies that there exists N ∈ N such that

θN
[
max
z∈Z

Ezβ̂R̂u
′(Ŷ ) +M max

z∈Z
Ezβ̂R̂

]
< (u′ ◦ c∗)(a, z̄).

As a result, we have (u′ ◦ c∗)(a, z̄) < (u′ ◦ c∗)(a, z̄) with probability p̄Nn+1 > 0. This

is a contradiction. Hence the stated claim is verified. �

Let F (dat+1 | at, Zt, Zt+1) be defined such thatP{at+1 ∈ A | (at, Zt, Zt+1) = (a, z, z′)} =∫
1{a′ ∈ A}F (da′ | a, z, z′) at A ∈ B(R+).

Lemma C.4. Let h : S → R+ be an integrable map such that a 7→ h(a, z) is de-

creasing for all z ∈ Z. Then, for all t ∈ N and z ∈ Z, the map a 7→ `(a, z, t) :=∫
h(a′, z′)Qt((a, z), d(a′, z′)) is decreasing.

Proof. Fix z ∈ Z. When t = 1, (21a) implies that

`(a, z, 1) =

∫ [∫
h(a′, z′)F (da′ | a, z, z′)

]
P (z, z′)ϑ(dz′).

Since a 7→ h(a, z) is decreasing, and by Proposition 2.3 and (21a), the optimal asset

accumulation path at+1 is increasing in at with probability one, we know that a 7→∫
h(a′, z′)F (da′ | a, z, z′) is decreasing for all z′ ∈ Z. Thus, a 7→ `(a, z, 1) is decreasing.

The claim holds for t = 1. Suppose this claim holds for arbitrary t, it remains to

show that it holds for t+ 1. Note that

`(a, z, t+ 1) =

∫∫
h(a′′, z′′)Qt((a′, z′), d(a′′, z′′))Q((a, z), d(a′, z′))

=

∫
`(a′, z′, t)Q((a, z), d(a′, z′)).

Since a′ 7→ `(a′, z′, t) is decreasing for all z′ ∈ Z, based on the induction argument,

a 7→ `(a, z, t+ 1) is decreasing. The stated claim then follows. �

Lemma C.5. The Markov process {(at, Zt)}t≥0 is ψ-irreducible.
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Proof. Recall δ > y` given by Assumption 3.2. Let D ∈ B(S) be defined by D :=

{y`}×{z̄} if (Y1) holds and D := (y`, δ)×{z̄} if (Y2) holds. We define the measure ϕ

on B(S) by ϕ(A) := (ν×ϑ)(A∩D) for A ∈ B(S). Clearly ϕ is a nontrivial measure. In

particular, ϑ({z̄}) = 1 as ϑ is the counting measure. Moreover, since y` is the greatest

lower bound of the support of {Yt}, it must be the case that ν({y`}) > 0 if (Y1) holds

and that ν((y`, δ)) > 0 if (Y2) holds. As a result, ϕ(S) = ν({y`})× ϑ({z̄}) > 0 when

(Y1) holds and ϕ(S) = ν((y`, δ))× ϑ({z̄}) > 0 when (Y2) holds.

We first show that {(at, Zt)} is ϕ-irreducible. Let A be an element of B(S) such that

ϕ(A) > 0. Fix (a, z) ∈ S. We need to show that {(at, Zt)} visits set A in finite time

with positive probability.

Since {zt} is irreducible, Pz{ZN0 = z̄} > 0 for some integer N0 ≥ 0. By Lemma C.1,

there exists ã < ∞ such that P(a,z){aN0 < ã, ZN0 = z̄} > 0. By Lemma C.3, there

exists T ∈ N such that P(ã,z̄) {cT = aT , ZT = z̄} ≥ P(ã,z̄)

{
cT = aT , ∩Ti=0{Zi = z̄}

}
>

0. Lemma B.7 and Lemma C.4 then imply that P(a′,z̄) {cT = aT , ZT = z̄} > 0 for all

a′ ∈ (0, ã). Hence, for N := N0 + T and E := {cN = aN , ZN = z̄}, we have

P(a,z)(E) ≥
∫
{a′≤ã, z′=z̄}

P(a′,z̄){cT = aT , ZT = z̄}QN0((a, z), d(a′, z′)) > 0 (50)

based on the Markov property. By (21a), we have

P(a,z){(aN+1, ZN+1) ∈ A} ≥ P(a,z) {(aN+1, ZN+1) ∈ A, aN = cN , ZN = z̄}

= P(a,z) {(aN+1, ZN+1) ∈ A | aN = cN , ZN = z̄} P(a,z)(E)

= P(a,z) {(YN+1, ZN+1) ∈ A, aN = cN , ZN = z̄} . (51)

Note that, by Assumption 3.2, f(y′′ | z′′)P (z̄, z′′) > 0 whenever (y′′, z′′) ∈ D. Since in

addition ϕ(A) = (ν × ϑ)(A ∩ D) > 0, we have∫
A

f(y′′ | z′′)P (z̄, z′′)(ν × ϑ)[d(y′′, z′′)] > 0.

Let 4 := P(a,z){(aN+1, ZN+1) ∈ A}. Then (50) and (51) imply that

4 ≥
∫
E

{∫
A

f(y′′ | z′′)P (z′, z′′)(ν × ϑ)[d(y′′, z′′)]

}
QN ((a, z), d(a′, z′)) > 0.

Therefore, we have shown that any measurable subset with positive ϕ measure can be

reached in finite time with positive probability, i.e., {(at, Zt)} is ϕ-irreducible. Based

on Proposition 4.2.2 of Meyn and Tweedie (2009), there exists a maximal probability

measure ψ on B(S) such that {(at, Zt)} is ψ-irreducible. �
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Lemma C.6. Let the function ā be defined as in (45). Then ā(z̄) ≥ y` if (Y1) holds,

while ā(z̄) > y` if (Y2) holds.

Proof. Suppose (Y1) holds and ā(z̄) < y`. Then, by Lemma B.7, for all t ∈ N,[
{ct = at} ∩

(
∩ti=0{Zi = z̄}

)]
=
[
{at ≤ ā(Zt)} ∩

(
∩ti=0{Zi = z̄}

)]
⊂
[
{at < y`} ∩

(
∩ti=0{Zi = z̄}

)]
⊂ {at < y`}. (52)

Hence, for all a ∈ (0,∞) and t ∈ N,

P(a,z̄)

[
{ct = at} ∩

(
∩ti=0{Zi = z̄}

)]
≤ P(a,z̄){at < y`} = 0,

where the last equality follows from (21a), which implies that at ≥ Yt ≥ y` with

probability one. This is contradicted with Lemma C.3.

Suppose (Y2) holds and ā(z̄) ≤ y`. By definition, Pz{Yt ≤ y`} = 0 for all z ∈ Z

and t ∈ N. Since at ≥ Yt with probability one, we have P(a,z){at ≤ y`} = 0 for

all (a, z) ∈ S and t ∈ N. Via similar analysis to (52), Lemma B.7 implies that

[{ct = at} ∩ (∩ti=0{Zi = z̄})] ⊂ {at ≤ y`} for all t ∈ N. Hence, for all a ∈ (0, 1) and

t ∈ N, we have P(a,z̄) [{ct = at} ∩ (∩ti=0{Zi = z̄})] ≤ P(a,z̄){at ≤ y`} = 0. Again, this

contradicts Lemma C.3. �

Lemma C.7. The Markov process {(at, Zt)}t≥0 is strongly aperiodic.

Proof. By the definition of strong aperiodicity, we need to show that there exists a

v1-small set D1 with v1(D1) > 0, i.e., there exists a nontrivial measure v1 on B(S)

and a subset D1 ∈ B(S) such that v1(D1) > 0 and

inf
(a,z)∈D1

Q ((a, z), A) ≥ v1 (A) for all A ∈ B(S). (53)

For δ > 0 given by Assumption 3.2, let C := (y`,min {δ, ā(z̄)}) and let D1 := {y`}×{z̄}
if (Y1) holds and D1 := C × {z̄} if (Y2) holds. We now show that D1 satisfies the

above conditions. Define r(a′, z′) := f(a′ | z′)P (z̄, z′) and note that r(a′, z′) > 0 on

D1. Define the measure v1 on B(S) by v1(A) :=
∫
A
r(a′, z′)(ν × ϑ)[d(a′, z′)]. If (Y1)

holds, then ν({y`}) > 0 as shown above, and, if (Y2) holds, Lemma C.6 implies

that ν(C) > 0. Since in addition ϑ({z̄}) > 0, it always holds that (ν × ϑ)(D1) > 0.

Moreover, since r(a′, z′) > 0 on D1, we have v1(D1) > 0 and v1 is a nontrivial measure.

For all (a, z) ∈ D1 and A ∈ B(S), Lemma B.7 implies that

Q ((a, z), A) =

∫
A

r(a′, z′)(ν × ϑ)[d(a′, z′)] = v1(A).

Hence, D1 satisfies (53) and {(at, Zt)}t≥0 is strongly aperiodic. �
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Lemma C.8. The set [0, d]× Z is a petite set for all d ∈ R+.

Proof. Fix d ∈ (0,∞) and z ∈ Z. Let B := [0, d]× {z}. By Lemma C.3,

P(d,z){cN−1 = aN−1, ZN−1 = z̄} > 0 for some N ∈ N. (54)

We start by showing that there exists a nontrivial measure vN on B(S) such that

inf
(a,z)∈B

QN((a, z), A) ≥ vN(A) for all A ∈ B(S). (55)

In other words, B is a vN -small set. Fix A ∈ B(S). For all z′ ∈ Z, define

m(z′) :=

∫ [∫
1{(y′′, z′′) ∈ A}f(y′′ | z′′) dy′′

]
P (z′, z′′)ϑ(dz′′).

Note that for all (a, z) ∈ B, Lemma B.7 implies that

QN((a, z), A) ≥ Pa,z {(YN , ZN) ∈ A, aN−1 ≤ ā(ZN−1), ZN−1 = z̄}

=

∫
m(z′)1{a′ ≤ ā(z′), z′ = z̄}QN−1((a, z), d(a′, z′)).

Since a′ 7→ m(z′)1{a′ ≤ ā(z′), z′ = z̄} is decreasing for all z′ ∈ Z, by Lemma C.4,

QN((a, z), A) ≥
∫
m(z′)1{a′ ≤ ā(z′), z′ = z̄}QN−1((d, z), d(a′, z′))

= Pd,z {(YN , ZN) ∈ A, cN−1 = aN−1, ZN−1 = z̄} =: vN(A).

Note that vN is a nontrivial measure on B(S) since (54) implies that vN(S) > 0.

Furthermore, since (a, z) is chosen arbitrarily, the above inequality implies that (55)

holds. We have shown that B is a vN -small set, and hence a petite set. Since finite

union of petite sets is petite for ψ-irreducible chains (see, e.g., Proposition 5.5.5 of

Meyn and Tweedie (2009)), the set [0, d]× Z must also be petite. �

Recall s̄ ∈ [0, 1) in Assumption 3.1, n ∈ N and γ ∈ (0, 1) in (48). Let B := [0, d]× Z.

Lemma C.9. There exist constants b ∈ R+, ρ ∈ (0, 1) and a measurable map V : S→
[n/ρ,∞) that is bounded on B, such that, for sufficiently large d ∈ R+ and all (a, z) ∈
S, we have Ea,zV (an, Zn)− V (a, z) ≤ −ρV (a, z) + b1{(a, z) ∈ B}.
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Proof. Since c∗(a, z) ≥ (1 − s̄)a by Proposition 2.6 and M0 := maxz∈ZEzR̂ < ∞ by

Assumption 3.1 and Lemma A.1, by Lemma B.1 and the Markov property,

Ea,zan ≤ s̄nEzRn · · ·R1a+
n∑
t=1

s̄n−tEzRn · · ·Rt+1Yt

≤ γa+
n∑
t=1

s̄n−tEzYtEZtRt+1 · · ·Rn ≤ γa+
n∑
t=1

s̄n−tMn−t
0 M3.

Define b0 :=
∑n

t=1 s̄
n−tMn−t

0 M3. Note that b0 <∞. Choose ρ ∈ (0, 1− γ), mV ≥ n/ρ

and d ∈ R+ such that (1− γ − ρ)d ≥ b0 + ρmV . Then, for V (a, z) := a+mV ,

Ea,zV (an, Zn)− V (a, z) ≤ −(1− γ)a+ b0 = −ρa− (1− γ − ρ)a+ b0

= −ρV (a, z)− (1− γ − ρ)a+ b0 + ρmV . (56)

In particular, if (a, z) /∈ B, then a > d and (56) implies that

Ea,zV (an, Zn)− V (a, z) ≤ −ρV (a, z)− (1− γ − ρ)d+ b0 + ρmV ≤ −ρV (a, z). (57)

Let b := b0 + ρmV . Then the stated claim follows from (56)–(57) and the fact that V

is bounded on B. �

Proof of Theorem 3.2. Claim (1) can be proved by applying Theorem 19.1.3 (or a

combination of Proposition 5.4.5 and Theorem 15.0.1) of Meyn and Tweedie (2009).

The required conditions in those theorems have been established by Lemmas C.5,

C.7, C.8 and C.9 above. Regarding claim (2), Lemmas C.8 and C.9 imply that

Ea,zV (an, Zn)−V (a, z) ≤ −n+b1{(a, z) ∈ B} for all (a, z) ∈ S, where B := [0, d]×Z is

petite. Since in addition {(at, Zt)} is ψ-irreducible by Lemma C.5, Theorem 19.1.2 of

Meyn and Tweedie (2009) implies that {(at, Zt)} is a positive Harris chain. Claim (2)

then follows from Theorem 17.1.7 of Meyn and Tweedie (2009).

To verify claim (3), since we have shown that Φ := {(at, Zt)} is positive Harris with

stationary distribution ψ∞, based on Theorem 16.1.5 and Theorem 17.5.4 of Meyn

and Tweedie (2009), it suffices to show that Q is V -uniformly ergodic. Let Φn be the

n-skeleton of Φ (see page 62 of Meyn and Tweedie (2009)). Then Φn is ψ-irreducible

and aperiodic by Proposition 5.4.5 of Meyn and Tweedie (2009). Theorem 16.0.1

of Meyn and Tweedie (2009) and Lemmas C.8 and C.9 then imply that Φn is V -

uniformly ergodic, and, there exists N ∈ N such that |||QnN − 1⊗ψ∞|||V < 1, where

‖µ‖V := supg:|g|≤V |
∫
g dµ| for µ ∈P(S) and, for all t ∈ N,

|||Qt − 1⊗ ψ∞|||V := sup
(a,z)∈S

‖Qt((a, z), ·)− ψ∞‖V
V (a, z)

.
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To show that Q is V -uniformly ergodic, by Theorem 16.0.1 of Meyn and Tweedie

(2009), it remains to verify: |||Qt− 1⊗ψ∞|||V <∞ for t ≤ nN . This obviously holds

since, by the proof of Lemma C.9, there exist L0, L1 ∈ R such that, for all t ∈ N,

|||Qt − 1⊗ ψ∞|||V ≤ sup
(a,z)∈S

sup
‖f‖≤V

∫
|f(a′, z′)|Qt((a, z), d(a′, z′))

V (a, z)
+ L0

≤ sup
(a,z)∈S

∫
V (a′, z′)Qt((a, z), d(a′, z′))

V (a, z)
+ L0 ≤ L0 + L1 <∞.

Hence, Q is V -uniformly ergodic and claim (3) follows. The proof is now complete. �

Proof of Theorem 3.3. Take an arbitrarily large constant k < 1 such that

P (z̄, z̄) > 0 and Pz̄{kG(z̄, z̄, ζ̂) > 1} > 0,

which is possible by Assumption 3.3 and the definition of G in (25a). For this k, since

lima→∞ c
∗(a, z)/a = α(z) and Z is a finite set, we can take ā > 0 such that

1− c∗(a, z)

a
≥ k(1− α(z))

for all z ∈ Z and a ≥ ā. Multiplying both sides by R(ẑ, ζ̂) ≥ 0, it follows from the

law of motion (21a), Y (ẑ, η̂) ≥ 0, and the definition of G in (25a) that for a ≥ ā,

â = R(ẑ, ζ̂)(a− c∗(a, z)) + Y (ẑ, η̂)

≥ R(ẑ, ζ̂)(a− c∗(a, z)) = R(ẑ, ζ̂)

(
1− c∗(a, z)

a

)
a

≥ R(ẑ, ζ̂)k(1− α(z))a = kG(z, ẑ, ζ̂)a.

Let Ã(z, ẑ, ζ̂) := kG(z, ẑ, ζ̂)1{kG(z, ẑ, ζ̂) > 1}. Then for all z, ẑ, ζ̂, η̂ and all a ≥ ā,

â ≥ Ã(z, ẑ, ζ̂)a. (58)

Start the wealth accumulation process at from a0 ≥ ā. Consider the following process:

St+1 = Ã(Zt, Zt+1, ζt+1)St,

where S0 = a0. We now show that at ≥ St with probability one for all t by induction.

Since S0 = a0, the case t = 0 is trivial. Suppose the claim holds up to t. Because

at ≥ 0 and St remains 0 once it becomes 0, without loss of generality we may assume

S0, . . . , St are all positive. Hence Ã1, . . . , Ãt > 0. By the definition of Ã, we have

Ã > 1 whenever Ã > 0. Therefore

St = Ãt · · · Ã1S0 ≥ S0 = a0 ≥ ā.
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Hence applying (58), we get

at+1 ≥ Ã(Zt, Zt+1, ζt+1)at ≥ Ã(Zt, Zt+1, ζt+1)St = St+1.

Now take any p ∈ (0, 1) and let T be a geometric random variable with mean 1/p

that is independent of everything. Define

λ̃(s) = (1− p)r(P �MÃ(s)),

where MÃ(s) is as in (24). Since clearly A ≥ Ã and p > 0, we have λ > λ̃. By

Lemma 3.1 of Beare and Toda (2017), λ, λ̃ are convex, and hence continuous in the

interior of their domains. Therefore λ(κ) = 1 and λ(s) > 1 for small enough s > κ.

Hence, for any ε > 0, we can take small enough p ∈ (0, 1) and large enough k < 1

such that λ̃(κ) < 1 < λ̃(κ+ ε) <∞. By Lemma 3.1 of Beare and Toda (2017), there

exists a unique κ̃ ∈ (κ, κ + ε) such that λ̃(κ̃) = 1. Theorem 3.4 of Beare and Toda

(2017) then implies that

lim inf
a→∞

aκ̃Pa0,z0{ST > a} > 0

for all (a0, z0) ∈ S. In particular, for any initial (a0, z0) ∈ S with a0 ≥ ā,

lim inf
a→∞

aκ+ε
Pa0,z0{ST > a} > 0. (59)

Now suppose that we draw a0 from the ergodic distribution. Then at has the same

distribution as a∞, and so does aT . Therefore

P{a∞ > a} = P{aT > a}

= P{a0 < ā}P{aT > a | a0 < ā}+P{a0 ≥ ā}P{aT > a | a0 ≥ ā}. (60)

If the ergodic distribution of {at} has unbounded support, then P{a0 ≥ ā} > 0. As

we have seen above, conditional on a0 ≥ ā, we have at ≥ St for all t. Therefore

lim inf
a→∞

aκ+ε
P{aT > a | a0 ≥ ā} ≥ lim inf

a→∞
aκ+ε

P{ST > a | a0 ≥ ā} > 0 (61)

by (59), and so (27) follows from (60) and (61). �
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