
Dynamic Programming Deconstructed: Transformations of the
Bellman Equation and Computational Efficiency1

Qingyin Maa and John Stachurskib

aISEM, Capital University of Economics and Business
bResearch School of Economics, Australian National University

December 4, 2019

Abstract. Some approaches to solving challenging dynamic programming prob-
lems, such as Q-learning, begin by transforming the Bellman equation into an al-
ternative functional equation, in order to open up a new line of attack. Our paper
studies this idea systematically, with a focus on boosting computational efficiency.
We provide a characterization of the set of valid transformations of the Bellman
equation, where validity means that the transformed Bellman equation maintains the
link to optimality held by the original Bellman equation. We then examine the solu-
tions of the transformed Bellman equations and analyze correspondingly transformed
versions of the algorithms used to solve for optimal policies. These investigations
yield new approaches to a variety of discrete time dynamic programming problems,
including those with features such as recursive preferences or desire for robustness.
Increased computational efficiency is demonstrated via time complexity arguments
and numerical experiments.

JEL Classifications: C61, E00
Keywords: Dynamic programming, optimality, computational efficiency

1. Introduction

Dynamic programming is central to the analysis of intertemporal planning problems in
management, operations research, economics, finance and other related disciplines (see,
e.g., Bertsekas (2012)). When combined with statistical learning, dynamic program-
ming also drives a number of strikingly powerful algorithms in artificial intelligence

1We thank Fedor Iskhakov, Takashi Kamihigashi, Larry Liu and Daisuke Oyama for valuable feed-
back and suggestions, as well as audience members at the Econometric Society meeting in Auckland
in 2018 and the 2nd Conference on Structural Dynamic Models in Copenhagen in 2018. Financial
support from ARC Discovery Grant DP120100321 is gratefully acknowledged.
Email addresses: qingyin.ma@cueb.edu.cn, john.stachurski@anu.edu.au

1

2

and automated decision systems (Kochenderfer (2015)). At the heart of dynamic pro-
gramming lies the Bellman equation, a functional equation that summarizes the trade
off between current and future rewards for a particular dynamic program. Under stan-
dard regularity conditions, solving the Bellman equation allows the researcher to assign
optimal values to states and then compute optimal policies via Bellman’s principle of
optimality (Bellman (1957)).

Despite its many successes, practical implementation of dynamic programming algo-
rithms is often challenging, due to high dimensionality, irregularities and/or lack of
data (see, e.g., Rust (1996)). A popular way to mitigate these problems is to try to
change the angle of attack by rearranging the Bellman equation into an alternative
functional form. One example of this is Q-learning, where the first step is to trans-
form the Bellman equation into a new functional equation, the solution of which is the
so-called Q-factor (see, e.g., Kochenderfer (2015) or Bertsekas (2012), Section 6.6.1).
Working with the Q-factor turns out to be convenient when data on transition proba-
bilities is scarce.

Other examples of transformations of the Bellman equation can be found in Kristensen
et al. (2018), who investigate three versions of the Bellman equation associated with a
fixed dynamic programming problem, corresponding to the value function, “expected
value function” and “integrated value function” respectively. Similarly, Bertsekas
(2012) discusses modifying the Bellman equation by integrating out “uncontrollable
states” (Section 6.1.5). Each of these transformations of the Bellman equation creates
new methods for solving for the optimal policy, since the transformations applied to
the Bellman equation can be likewise applied to the iterative techniques used to solve
the Bellman equation (e.g., value function iteration or policy iteration).

The purpose of this paper is twofold. First, we provide the first systematic investiga-
tion of these transformations, by developing a framework sufficiently general that all
transformations of which we are aware can be expressed as special cases. We then ex-
amine the solutions of the transformed Bellman equations, along with correspondingly
transformed versions of solution algorithms such as value function iteration or policy
iteration. We provide a condition under which the transformed Bellman equations sat-
isfy a version of Bellman’s principle of optimality, and the correspondingly transformed
versions of the algorithms lead to optimal policies. This puts existing transformations
on a firm theoretical foundation, in terms of their link to optimal policies, thereby elim-
inating the need to check optimality or convergence of algorithms on a case-by-case
basis.

3

Second, on a more practical level, we use the framework developed above to create new
transformations, or to apply existing transformations in new contexts, and to examine
the convergence properties of the associated algorithms. Although there are many
motivations for applying transformations to the Bellman equation (such as to facilitate
learning, as in the case of Q-learning, or to simplify estimation as in Rust (1987)),
the motivation that we focus on here is computational efficiency. In particular, we
examine transformations of the Bellman equation that retain the links to optimality
discussed above while reducing the dimension of the state space. Because the cost of
high dimensionality is exponential, even small reductions in the number of variables
can deliver speed gains of one or two orders of magnitude. These claims are verified
theoretically and through numerical experiments when we consider applications.

One of the reasons that we are able to create new transformations is that we embed
our theoretical results in a very general abstract dynamic programming framework,
as found for example in Bertsekas (2013). This allows us to examine transformations
of the Bellman equation in settings beyond the traditional additively separable case,
which have been developed to better isolate risk preferences or accommodate notions
of ambiguity. Examples of such objective functions can be found in Iyengar (2005),
Hansen and Sargent (2008), Ruszczyński (2010) and Bäuerle and Jaśkiewicz (2018).

When analyzing solution methods and computational efficiency, we show that succes-
sive iterates of the transformed Bellman operator converge at the same rate as the
original Bellman operator in the following sense: the n-th iterate of the Bellman op-
erator can alternatively be produced by iterating the same number of times with the
transformed Bellman operator and vice versa. This means that, to judge the relative
efficiency, one only needs to consider the computational cost of a single iteration of the
transformed Bellman operator versus the original Bellman operator.

When treating algorithms for computing optimal policies, we focus in particular on
so-called optimistic policy iteration, which contains policy iteration and value function
iteration as special cases, and which can typically be tuned to converge faster than
either one in specific applications. We show that, under a combination of stability and
monotonicity conditions, the sequence of policies generated by a transformed version of
optimistic policy iteration, associated with a particular transformation of the Bellman
equation, converges to optimality.

Some results related to ours and not previously mentioned can be found in Rust (1994),
which discusses the connection between the fixed point of a transformed Bellman equa-
tion and optimality of the policy that results from choosing the maximal action at each
state evaluated according to this fixed point. This is again a special case of what we

4

cover, specific to one specialized class of dynamic programming problems, with discrete
choices and additively separable preferences, and refers to one specific transformation
associated with the expected value function.

There is, of course, a very large literature on maximizing computational efficiency in
solution methods for dynamic programming problems (see, e.g., Powell (2007)). The
results presented here are, in many ways, complementary to this existing literature. For
example, fitted value iteration is a popular technique for solving the Bellman equation
via successive approximations, combined with a function approximation step (see, e.g.,
Munos and Szepesvári (2008)). This methodology could also, in principle, be applied
to transformed versions of the Bellman equation and the successive approximation
techniques for solving them examined in this paper.

The rest of our paper is structured as follows. Section 2 formulates the problem.
Section 3 discusses optimality and algorithms. Section 4 gives a range of applications.
Longer proofs are deferred to the appendix.

2. General Formulation

This section presents an abstract dynamic programming problem and the key concepts
and operators related to the formulation.

2.1. Problem Statement. We use N to denote the set of natural numbers and N0 :=

{0} ∪N, while RE is the set of real-valued functions defined on some set E. In what
follows, a dynamic programming problem consists of

• a nonempty set X called the state space,
• a nonempty set A called the action space,
• a nonempty correspondence Γ from X to A called the feasible correspondence,

along with the associated set of state-action pairs

F := {(x, a) ∈ X× A : a ∈ Γ(x)},

• a subset V of RX called the set of candidate value functions, and
• a state-action aggregator H mapping F× V to R ∪ {−∞}.

The interpretation of H(x, a, v) is the lifetime value associated with choosing action a
at current state x and then continuing with a reward function v attributing value to
states. In other words, H(x, a, v) is an abstract representation of the value to be max-
imized on the right hand side of the Bellman equation (see (1) below). This abstract
representation accommodates both additively separable and nonseparable preferences

5

and is based on Bertsekas (2013). The sets X and A are, at this point, arbitrary. They
can, for example, be finite or subsets of Euclidean vector space.

We associate to this abstract dynamic program the Bellman equation

v(x) = sup
a∈Γ(x)

H(x, a, v) for all x ∈ X. (1)

Stating that v ∈ V solves the Bellman equation is equivalent to stating that v is a fixed
point of the Bellman operator, which we denote by T and define by

T v(x) = sup
a∈Γ(x)

H(x, a, v) (x ∈ X, v ∈ V). (2)

Example 2.1. In a traditional infinite horizon finite state Markov decision process, an
agent observes a state x in finite set X and responds with action a from Γ(x), a subset
of finite set A. The state then updates to x′ next period with probability p(x, a, x′).
The objective is to choose a policy σ : X → A such that, when {at} is selected according
to at = σ(xt) at each t, the objective E

∑
t>0 β

tr(xt, at) is maximized. Here β ∈ (0, 1)

is a discount factor and r is a real-valued reward function. This fits directly into our
framework if we set V to be all functions from X to R and

H(x, a, v) = r(x, a) + β
∑
x′∈X

v(x′)p(x, a, x′). (3)

In particular, inserting the right hand side of (3) into (1) reproduces the standard
Bellman equation for this problem (see, e.g., Bertsekas (2013), Example 1.2.2).

More detailed examples, involving those with nonseparable preferences, are given in
Section 2.4 and Section 4 below.

2.2. Policies and Assumptions. Let Σ denote the set of feasible policies, which we
define as all σ : X → A satisfying σ(x) ∈ Γ(x) for all x ∈ X and the regularity condition

v ∈ V and w(x) = H(x, σ(x), v) on X =⇒ w ∈ V . (4)

Given v ∈ V , a feasible policy σ with the property that

H(x, σ(x), v) = sup
a∈Γ(x)

H(x, a, v) for all x ∈ X (5)

is called v-greedy. In other words, a v-greedy policy is one we obtain by treating v as
the value function and maximizing the right hand side of the Bellman equation.

Assumption 2.1. There exists a subset V of V such that T maps elements of V into
itself, and a v-greedy policy exists in Σ for each v in V.

6

Assumption 2.1 guarantees the existence of stationary policies and allows us to work
with maximal decision rules instead of suprema. It is obviously satisfied for any dy-
namic program where the set of actions is finite, such as Example 2.1 (by letting
V = V), and extends to infinite choice problems when primitives are sufficiently con-
tinuous and the choice set at each action is compact.

Given σ ∈ Σ, any function vσ in V satisfying

vσ(x) = H(x, σ(x), vσ) for all x ∈ X

is called a σ-value function. We understand vσ(x) as the lifetime value of following
policy σ now and forever, starting from current state x.

Assumption 2.2. For each σ ∈ Σ, there is exactly one σ-value function in V , denoted
by vσ.

Assumption 2.2 is required for our optimization problem to be well defined, and is easy
to verify for regular Markov decision problems such as the one described in Example 2.1
(see, e.g., Bertsekas (2013), Example 1.2.1). When rewards are unbounded or dynamic
preferences are specified recursively, the restrictions on primitives used to establish this
assumption vary substantially across applications (see, e.g., Marinacci and Montrucchio
(2010), Bäuerle and Jaśkiewicz (2018), or Bloise and Vailakis (2018) for sufficient
conditions in these contexts, and Bertsekas (2013) for general discussion).

2.3. Decompositions and Plan Factorizations. Next we introduce plan factoriza-
tions (which correspond to transformations of the Bellman equation) in a relatively
abstract form, motivated by the desire to accommodate existing transformations ob-
served in the literature and admit new ones. As a start, let G (resp., G) be the set of
functions g in RF such that g = W0v for some v ∈ V (resp., for some v ∈ V). Let H
(resp., H) be all functions h in RF such that, for some v ∈ V (resp., for some v ∈ V),
we have h(x, a) = H(x, a, v) for all (x, a) ∈ F. Let M be the operator defined at h ∈ H
by

(Mh)(x) = sup
a∈Γ(x)

h(x, a). (6)

The operator M maps elements of H into V. Indeed, given h ∈ H, there exists by
definition a v ∈ V such that h(x, a) = H(x, a, v) at each (x, a) ∈ F. We then have
Mh = Tv ∈ V by (2) and Assumption 2.1.

A plan factorization associated with the dynamic program described above is a pair of
operators (W0,W1) such that

(1) W0 is defined on V and takes values in G,

7

Figure 1. The one-shift operators

(2) W1 is defined on G and takes values in H, and
(3) the operator composition W1W0 satisfies

(W1W0 v)(x, a) = H(x, a, v) for all (x, a) ∈ F, v ∈ V . (7)

Equation (7) states that W0 and W1 provide a decomposition (or factorization) of H, so
that each element Wi implements a separate component of the two stage (i.e., present
and future) planning problem associated with the Bellman equation.

Given the definition of M in (6) and the factorization requirement (7), the Bellman
operator T from (2) can now be expressed as

T = M W1 W0. (8)

In the following, when we discuss the Bellman operator (and the refactored Bellman
operator to be defined below), we confine the domain of the operators W0, W1 and M
to V, G and H, respectively. In that circumstance, T is a cycle starting from V. In
particular, W0 maps V into G, and W1 maps G into H by definition, while M maps
H into V as has been shown above. A visualization is given in Figure 1.

Corresponding to this same plan factorization (W0,W1), we introduce a refactored
Bellman operator S on G defined by

S = W0 M W1. (9)

8

In terms of Figure 1, S is a cycle starting from G. Corresponding to S, we have the
refactored Bellman equation

g(x, a) = (W0MW1 g)(x, a) for all (x, a) ∈ F. (10)

The transformations of the Bellman equation we wish to consider all correspond to a
version of (10), under some suitable specification of W0 and W1.

2.4. Examples. In this section we briefly illustrate the framework with examples. The
examples contain both common transformations and new ones. Throughout, β ∈ (0, 1)

denotes the discount factor.

2.4.1. Q-Factors. Consider the traditional finite state Markov decision process from
Example 2.1, where V is all functions from X to R and H is as given in (3). Let V = V .
One special case of the refactored Bellman equation is the equation for determining
optimal Q-factors that forms the basis of Q-learning. If I is the identity map and we
set

(W0 v)(x, a) = r(x, a) + β
∑
x′∈X

v(x′)p(x, a, x′) and W1 = I,

then (W0,W1) is a plan factorization, since (W1W0 v)(x, a) = H(x, a, v) when the latter
is given by (3). For this plan factorization, the refactored Bellman operator S from (9)
becomes S = W0M , or, more explicitly,

(Sg)(x, a) = r(x, a) + β
∑
x′∈X

max
a′∈Γ(x′)

g(x′, a′)p(x, a, x′).

Solving for g = Sg is exactly the problem associated with computation of optimal
Q-factors. See, for example, Equation (1.4) of Bertsekas and Yu (2012) or Equation
(2.24) of Bertsekas (2012). Thus, the underlying functional equations and fixed point
problems of Q-learning correspond to the special case of our theory where W1 is the
identity.

2.4.2. The Standard Case. The previous example showed how the problem of obtaining
Q-factors is one kind of plan factorization—in fact an extreme kind, where the element
W1 of the pair (W0,W1) is the identity. The other extreme case is when W0 is the
identity. Then, the standard and refactored operators T and S coincide, as can be
confirmed by consulting (8) and (9). Thus, the standard Bellman equation and the
Q-factor equation can be viewed as the two extremal cases of plan factorization.

9

2.4.3. Expected Value Transformation. Continuing with the Markov decision process
from Example 2.1, where H is as given in (3), consider the plan factorization (W0,W1)

defined by

(W0 v)(x, a) =
∑
x′∈X

v(x′)p(x, a, x′) and (W1 g)(x, a) = r(x, a) + βg(x, a). (11)

Evidently (11) yields a plan factorization, in the sense that (W1W0 v)(x, a) = H(x, a, v)

when the latter is given by (3). For this plan factorization, the refactored Bellman
operator S from (9) becomes

(Sg)(x, a) = (W0MW1 g)(x, a) =
∑
x′∈X

max
a′∈Γ(x′)

{r(x′, a′) + βg(x′, a′)} p(x, a, x′). (12)

With this choice of plan factorization, the operator S is a generalization of the “ex-
pected value operator” used by Rust (1987) in the context of optimal timing of decisions
for bus engine replacement. At this point in time it is not apparent why one should
favor the use of S over the regular Bellman operator T , and indeed there might be no
advantage. The benefit of having a general optimality theory based around S rather
than T , as constructed below, is the option of using S when the structure of the problem
implies that doing so is advantageous. Examples are shown in Section 4.

2.4.4. Optimal Stopping. Consider an optimal stopping problem with additively sepa-
rable preferences (see, e.g., Monahan (1980) or Peskir and Shiryaev (2006)), where an
agent observes current state x and chooses between stopping and continuing. Stopping
generates terminal reward r(x) while continuing yields flow continuation reward c(x).
If the agent continues, the next period state x′ is drawn from P (x, dx′) and the process
repeats. The agent takes actions in order to maximize expected lifetime rewards. The
state-action aggregator H for this model is

H(x, a, v) = a r(x) + (1− a)

[
c(x) + β

∫
v(x′)P (x, dx′)

]
, (13)

where a ∈ Γ(x) := {0, 1} is a binary choice variable with a = 1 indicating the decision
to stop. Let X be a Borel subset of Rm, r and c be bounded and continuous, V = V

be the set of bounded continuous functions on X, and P satisfy the Feller property
(i.e., x 7→

∫
v(x′)P (x, dx′) is bounded and continuous whenever v is). Assumption 2.1

holds because the action space is discrete and Assumption 2.2 holds by a standard
contraction argument (see, e.g., Section 2.1 of Bertsekas (2013)).

One possible plan factorization is

(W0 v)(x) =

∫
v(x′)P (x, dx′) and (W1 g)(x) = a r(x) + (1− a) [c(x) + βg(x)] .

10

The refactored Bellman operator S = W0MW1 is then given by

(Sg)(x) =

∫
max {r(x′), c(x′) + βg(x′)}P (x, dx′). (14)

There exist applications in the field of optimal stopping where iteration with the oper-
ator S given in (14) is computationally more efficient than iterating with the standard
Bellman operator T (see, e.g., Rust (1987)). Section 4.2 expands on this point.

2.4.5. Risk Sensitive Preferences. Consider a risk-sensitive control problem where H
can be expressed as

H(x, a, v) =

{
r(x, a)− β

γ
log

∫
exp[−γv(x′)]P (x, a, dx′)

}
. (15)

Here P (x, a, dx′) gives one-step state transition probabilities given state x ∈ R+ and
action a ∈ [0, x], while γ > 0 controls the degree of risk sensitivity. One example of this
set up occurs in Bäuerle and Jaśkiewicz (2018), where H(x, a, v) has the interpretation
of lifetime rewards when an agent owns current capital x, choses current consumption
a, receives current reward r(x, a) and then transitions to the next period with capital
drawn from P (x, a, dx′). Sufficient conditions for Assumptions 2.1–2.2 can be found in
Theorem 1 of that paper.

There are many plan factorizations we could consider here, one of which extends the
Q-factor transformation in Section 2.4.1, and another of which extends the expected
value transformation in Section 2.4.3. Taking the latter as an example, we set

(W0 v)(x, a) = −β
γ
log

∫
exp[−γv(x′)]P (x, a, dx′)

and (W1 g)(x, a) = r(x, a) + g(x, a). (16)
Evidently (16) yields a plan factorization, in the sense that (W1W0 v)(x, a) = H(x, a, v)

when the latter is given by (15). The refactored Bellman operator S = W0MW1 is
given by

(Sg)(x, a) = −β
γ
log

∫
exp

[
−γ max

a′∈Γ(x′)
{r(x′, a′) + g(x′, a′)}

]
P (x, a, dx′). (17)

2.5. Refactored Policy Values. Returning to the general setting, we also wish to
consider the value of individual policies under the transformation associated with a
given plan factorization (W0,W1). This will be important when we consider topics
such as policy function iteration. To this end, for each σ ∈ Σ and each h ∈ H, we
define the operator Mσ : H → V by

Mσh(x) := h(x, σ(x)). (18)

11

That Mσ does in fact map H into V follows from the definition of these spaces and (4).
In particular, if h ∈ H, by definition, there exists a v ∈ V such that h(x, a) = H(x, a, v)

for all (x, a) ∈ F. Then Mσh ∈ V follows directly from (4). Comparing with M defined
in (6), we have

Mσh 6Mh for each h ∈ H and σ ∈ Σ. (19)

Given σ ∈ Σ, the operator Tσ from V to itself defined by Tσv(x) = H(x, σ(x), v) for all
x ∈ X will be called the σ-value operator. By construction, it has the property that vσ
is the σ-value function corresponding to σ if and only if it is a fixed point of Tσ. With
the notation introduced above, we can express it as

Tσ = Mσ W1 W0. (20)

Note that Tσ is a cycle starting from V . In particular, W0 maps V into G, and W1 maps
G into H by the definition of plan factorization, while Mσ maps H into V as shown
above.

Analogous to the definition of the refactored Bellman operator in (9), we introduce the
refactored σ-value operator on G

Sσ := W0 Mσ W1 (21)

corresponding to a given plan factorization (W0,W1). Similarly, Sσ is a cycle starting
from G. A fixed point gσ of Sσ is called a refactored σ-value function. The value
gσ(x, a) can be interpreted as the value of following policy σ in all subsequent periods,
conditional on current action a.

Example 2.2. Recall the expected value function factorization of a finite state Markov
decision process discussed in Section 2.4.3. For a given policy σ, the refactored σ-value
operator can be obtained by replacing M in (12) with Mσ, which yields

(Sσg)(x, a) = (W0MσW1 g)(x, a)

=
∑
x′∈X

{r(x′, σ(x′)) + βg(x′, σ(x′))} p(x, a, x′). (22)

Example 2.3. Recall the plan factorization (14) applied to the optimal stopping prob-
lem with aggregator H given by (13). A feasible policy is a map σ from X to A = {0, 1}.
The refactored σ-value operator corresponding to this plan factorization is

(Sσg)(x) =

∫
{σ(x′)r(x′) + (1− σ(x′))[c(x′) + βg(x′)]}P (x, dx′). (23)

12

2.6. Fixed Points and Iteration. We begin with some preliminary results on prop-
erties of the operators defined above. Our first result states that, to iterate with T ,
one can alternatively iterate with S, since iterates of S can be converted directly into
iterates of T . Moreover, the converse is also true, and similar statements hold for the
policy operators:

Proposition 2.1. For every n ∈ N, we have

Sn = W0 T
n−1 M W1 and T n = M W1 S

n−1 W0.

Moreover, for every n ∈ N and every σ ∈ Σ, we have

Sn
σ = W0 T

n−1
σ Mσ W1 and T n

σ = Mσ W1 S
n−1
σ W0.

Proposition 2.1 follows from the definitions of T and S along with a simple induction
argument. While the proof is relatively straightforward, the result is important because
that it provides a metric-free statement of the fact that the sequence of iterates of any
refactored Bellman operator converges at the same rate as that of the standard Bellman
operator.

The next result shows a fundamental connection between the two forms of the Bellman
operator in terms of their fixed points.

Proposition 2.2. The Bellman operator T admits a unique fixed point v̄ in V if and
only if the refactored Bellman operator S admits a unique fixed point ḡ in G. Whenever
these fixed points exist, they are related by v̄ =MW1 ḡ and ḡ = W0 v̄.

Thus, if a unique fixed point of the Bellman operator is desired but T is difficult to
work with, a viable option is to show that S has a unique fixed point, compute it, and
then recover the unique fixed point of T via v̄ =MW1 ḡ.

A result analogous to Proposition 2.2 holds for the policy operators:

Proposition 2.3. Given σ ∈ Σ, the refactored σ-value operator Sσ has a unique fixed
point gσ in G if and only if Tσ has a unique fixed point vσ in V. Whenever these fixed
points exist, they are related by vσ =MσW1 gσ and gσ = W0 vσ.

Proposition 2.3 implies that, under Assumption 2.2, there exists exactly one refactored
σ-value function gσ in G for every σ ∈ Σ. Proposition 2.3 is also useful for the converse
implication. In particular, to establish Assumption 2.2, which is often nontrivial when
preferences are not additively separable, we can equivalently show that Sσ has a unique
fixed point in G.

13

3. Optimality

Next we turn to optimality, with a particular focus on the properties that must be
placed on a given plan factorization in order for the corresponding (refactored) Bellman
equation to lead us to optimal actions. Our first step, however, is to define optimality
and recall some standard results.

3.1. Fixed Points and Optimal Policies. The value function associated with our
dynamic program is defined at x ∈ X by

v∗(x) = sup
σ∈Σ

vσ(x). (24)

A feasible policy σ∗ is called optimal if vσ∗ = v∗ on X. Given σ ∈ Σ, Bellman’s principle
of optimality states that

σ is an optimal policy ⇐⇒ σ is v∗-greedy. (25)

The next theorem is a simple extension of foundational optimality results for dynamic
decision problems that link the Bellman equation to optimality (see, e.g., Bertsekas
(2013)). Its proof is omitted. The assumptions of Section 2.2 are taken to be in force.

Theorem 3.1. The next two statements are equivalent:

(1) The value function v∗ lies in V and satisfies the Bellman equation (1).
(2) Bellman’s principle of optimality (25) holds and the set of optimal policies is

nonempty.

The motivation behind the transformations we consider in this paper is that the Bell-
man equation can be refactored into a more convenient form without affecting optimal-
ity. Thus, it is natural to ask when—and under what conditions—a result analogous
to Theorem 3.1 holds for the refactored Bellman equation (10). We will show that an
analogous result obtains whenever a form of monotonicity holds for the transformation
being used in the plan factorization.

Before we get to this result, however, we need to address the following complication:
there are two distinct functions that can take the part of v∗ in Theorem 3.1. One is
the “rotated value function”

ĝ := W0 v
∗. (26)

The second is
g∗(x, a) := sup

σ∈Σ
gσ(x, a). (27)

14

We call g∗ the refactored value function. The definition of g∗ directly parallels the
definition of the value function in (24), with g∗(x, a) representing the maximal value
that can be obtained from state x conditional on choosing a in the current period.
(Since Assumption 2.2 is in force, the set of functions {gσ} in the definition of g∗ is
well defined by Proposition 2.3, and hence so is g∗ as an extended real-valued function,
although it might or might not live in G.)

As shown below, the functions ĝ and g∗ are not in general equal, although they be-
come so when a certain form of monotonicity is imposed. Moreover, under this same
monotonicity condition, if one and hence both of these functions are fixed points of S,
we obtain valuable optimality results.

In stating these results, we recall that a map A from one partially ordered set (E,6)

to another such set (F,6) is called monotone if x 6 y implies Ax 6 Ay. Below,
monotonicity is with respect to the pointwise partial order on V, G and H. Moreover,
given g ∈ G, a policy σ ∈ Σ is called g-greedy if MσW1 g = MW1 g. At least
one g-greedy policy exists for every g ∈ G. Indeed, g ∈ G implies the existence of
a v ∈ V such that g = W0 v, and to this v there corresponds a v-greedy policy σ by
Assumption 2.1. At this σ we have H(x, σ(x), v) = supa∈Γ(x)H(x, a, v) for every x ∈ X,
or, equivalently, MσW1W0 v =MW1W0 v pointwise on X. Since g = W0 v, this policy
is g-greedy.

We can now state our first significant optimality result. It shows that, under some
monotonicity conditions, the standard Bellman equation and the refactored Bellman
equation have “equal rights,” in the sense that both can be used to obtain the same
optimal policy, and both satisfy a version of Bellman’s principle of optimality.

Theorem 3.2. Let (W0,W1) be a plan factorization, let ĝ be as defined in (26) and
let g∗ be as defined in (27). If W0 and W1 are both monotone, then the following
statements are equivalent:

(1) g∗ lies in G and satisfies the refactored Bellman equation (10).
(2) v∗ lies in V and satisfies the Bellman equation (1).

If these conditions hold, then g∗ = ĝ, the set of optimal policies is nonempty and, for
σ ∈ Σ, we have

σ is an optimal policy ⇐⇒ σ is g∗-greedy ⇐⇒ σ is v∗-greedy. (28)

The monotonicity conditions on W0 and W1 clearly hold in all of the example trans-
formations discussed in Sections 2.4.1–2.4.4. It is possible to envisage settings where

15

they fail, however. For example, if we replace the factorization (W0,W0) in (16) with

(W0 v)(x, a) =

∫
exp[−γv(x′)]P (x, a, dx′)

and (W1 g)(x, a) = r(x, a)− β

γ
log g(x, a),

we again have a valid plan factorization (since (W1W0 v)(x, a) = H(x, a, v) when the
latter is given by (15)) but neither W0 nor W1 is monotone.

In general, monotonicity of W0 and W1 cannot be dropped from Theorem 3.2 without
changing its conclusions. In Section 6.4 of the Appendix we exhibit dynamic programs
and plan factorizations that illustrate the following possibilities:

(1) ĝ ̸= g∗.
(2) Tv∗ = v∗ and yet Sg∗ ̸= g∗.
(3) Sg∗ = g∗ and yet Tv∗ ̸= v∗.

3.2. Sufficient Conditions. Theorem 3.2 tells us that if the stated monotonicity
condition holds and Sg∗ = g∗, then we can be assured of the existence of optimal
policies and have a means to characterize them. What we lack is a set of sufficient
conditions under which the refactored Bellman operator has a unique fixed point that
is equal to g∗. The theorem stated in this section fills that gap.

To state the theorem, we recall that a self-mapping A on a topological space U is called
asymptotically stable on U if A has a unique fixed point ū in U and Anu→ ū as n→ ∞
for all u ∈ U . In the following, we assume that there exists a Hausdorff topology τ

on G under which the pointwise partial order is closed (i.e., its graph is closed in the
product topology on G × G. The key implication is that if fn → f and gn → g under
τ and fn 6 gn for all n, then f 6 g). Asymptotic stability is with respect to this
topology.

In the theorem below, (W0,W1) is a given plan factorization and g∗ is the refactored
value function.

Theorem 3.3. If W0 and W1 are monotone, S is asymptotically stable on G and
{Sσ}σ∈Σ are asymptotically stable on G, then

(1) g∗ is the unique solution to the refactored Bellman equation in G,
(2) limk→∞ Skg = g∗ under τ for all g ∈ G,
(3) at least one optimal policy exists, and
(4) a feasible policy is optimal if and only if it is g∗-greedy.

16

In Theorem 3.3 we eschewed a contractivity assumption on S or Sσ, since such an
assumption is problematic in certain applications (see, e.g., Bertsekas (2013)). Never-
theless, contraction methods can be applied to many other problems. For this reason
we add the next proposition, which is a refactored analog of the classical theory of
dynamic programming based around contraction mappings.

Let ∥ · ∥κ be defined at f ∈ RF by ∥f∥κ = sup |f/κ|. Here the supremum is over
all (x, a) ∈ F and κ is a fixed “weighting function”, i.e., an element of RF satisfying
inf κ > 0 on F. This mapping defines a norm on bκF, the set of f ∈ RF such that
∥f∥κ <∞.

Proposition 3.4. Let W0 and W1 be monotone. If G and G are closed subsets of bκF
and there exists a positive constant α such that α < 1 and

∥Sσ g − Sσ g
′∥κ 6 α ∥g − g′∥κ for all g, g′ ∈ G and σ ∈ Σ, (29)

then S is a contraction mapping on (G, ∥ · ∥κ) of modulus α, S is asymptotically stable
on G, and the conclusions of Theorem 3.3 all hold.

The purpose of κ here is to control for unbounded rewards (see, e.g, Bertsekas (2013)).
When rewards are bounded we can take κ ≡ 1, in which case ∥ · ∥κ is the ordinary
supremum norm and bκF is just the bounded functions on F. Notice also that the
contractivity requirement in (29) is imposed on Sσ rather than S, making the condition
easier to verify (since Sσ does not involve a maximization step).

3.3. Policy Iteration. There are algorithms besides value function iteration that
achieve faster convergence in some applications. These include Howard’s policy it-
eration algorithm and a popular variant called optimistic policy iteration (see, e.g.,
Puterman and Shin (1982) or Bertsekas (2012)). Optimistic policy iteration is im-
portant because it includes value function iteration and Howard’s policy iteration al-
gorithm as limiting cases. In this section we give conditions under which optimistic
policy iteration is successful in the setting of a given plan factorization (W0,W1). We
make the following assumption.

Assumption 3.1. At least one v-greedy policy exists in Σ for each v in V .

Note that Assumption 3.1 implies Assumption 2.1. In particular, by Assumption 3.1,
for each v ∈ V , there exists a σ in Σ such that Tv(x) = H(x, σ(x), v) for all x ∈ X. (4)
then implies that Tv ∈ V . Therefore, T is a self-map on V and Assumption 2.1 holds
by letting V = V .

17

The standard algorithm starts with an initial candidate v0 ∈ V and generates sequences
{σv

k}, {Σv
k} in Σ and {vk} in V by taking

σv
k ∈ Σv

k and vk+1 = Tmk
σv
k
vk for all k ∈ N0, (30)

where Σv
k is the set of vk-greedy policies, and {mk} is a sequence of positive integers.

The first step of equation (30) is called policy improvement, while the second step is
called partial policy evaluation. If mk = 1 for all k then the algorithm reduces to value
function iteration.

To extend this idea to the refactored case, we take an initial candidate g0 ∈ G and
generate sequences {σg

k}, {Σg
k} in Σ and {gk} in G via

σg
k ∈ Σg

k and gk+1 = Smk

σg
k
gk for all k ∈ N0, (31)

where Σg
k is the set of gk-greedy policies. The next result shows that (30) and (31)

indeed generate the same sequences of greedy policies.

Theorem 3.5. If v0 ∈ V and g0 = W0 v0, then sequences {σk} and {Σk} in Σ satisfy
(30) if and only if they satisfy (31). Moreover, the generated {vk} and {gk} sequences
satisfy gk = W0 vk for all k.

Moreover, optimistic policy iteration via the refactored Bellman operator converges, as
for the standard Bellman operator:

Theorem 3.6. Let W0 and W1 be monotone and let S and {Sσ}σ∈Σ be asymptotically
stable on G. If g0 6 Sg0, then gk 6 gk+1 for all k and gk → g∗ as k → ∞.

Example 3.1. In (22), we gave the refactored σ-value operator Sσ associated with the
expected value function factorization of a finite state Markov decision process. Recall
that we set V and V to be the set of functions from X to R. So Assumption 3.1 holds
based on the analysis of Section 2.2. It is straightforward to check that this choice of
Sσ satisfies (29) when α is set to the discount factor β and κ ≡ 1. Since the operators
W0 and W1 associated with this plan factorization are both monotone (see (12)), the
conclusions of Theorems 3.3, 3.5 and 3.6 are all valid.

Example 3.2. The refactored σ-value operator Sσ corresponding to the plan factoriza-
tion used in the optimal stopping problem from Section 2.4.4 was given in (23). Since
both V and V are the set of bounded continuous functions on X, Assumption 3.1 has
been verified in Section 2.4.4. Moreover, it is straightforward to show that Sσ satisfies
(29) when α := β and κ ≡ 1. Hence, for this plan factorization of the optimal stopping
problem, the conclusions of Theorems 3.3–3.6 hold.

18

4. Applications

In this section we connect the theory presented above with applications. In each
case, we use transformations of the Bellman equation that reduce dimensionality and
enhance computational efficiency. Throughout, we use E y|x to denote the expectation
of y conditional on x. Code that replicates all of our numerical results can be found at
https://github.com/jstac/dp_deconstructed_code.

4.1. Consumer Bankruptcy. Livshits et al. (2007) analyze consumer bankruptcy
rules by building a dynamic model of household choice with earnings and expense un-
certainty. In the model (slightly streamlined), a household’s time t income is ztηt,
where zt and ηt are the persistent and transitory components of productivity. House-
holds face an expense shock κt > 0. While {zt} is Markov, {ηt} and {κt} are iid. All
are mutually independent. The Bellman equation takes the form

v(i, d, z, η, κ) = max
c, d′, i′

[
u(c) + βE z′,η′,κ′|z v(i

′, d′, z′, η′, κ′)
]
, (32)

where d is debt, c is current consumption, β is a discount factor, and u is one-period
utility. Primes denote next period values. The state i indicates repayment status and
lies in {R,B,E}, where R, B and E correspond to repayment, bankruptcy and default
on current expenses. With q and r̄ indicating the interest rate for a household in states
R and E respectively, and γ parameterizing compulsory repayments out of current
income, the constraints can be expressed as follows: All variables are nonnegative and,
in addition,

C1. if i = R, then c+ d+ κ = zη + q(d′, z)d′ and i′ ∈ {R,B}.
C2. If i = B, then c = (1− γ)zη, d′ = 0 and i′ ∈ {R,E}.
C3. If i = E, then c = (1− γ)zη, d′ = (κ− γzη)(1 + r̄) and i′ ∈ {R,B}.

A full interpretation of these constraints and the decision problem of the household
can be found on p. 407 of Livshits et al. (2007). As in that paper, to implement the
model computationally, we assume that all states are discrete. In particular, η, κ and
z take values in finite sets, and the choice of debt level d is restricted to a finite grid
with maximum d̄. The model then becomes a special case of the finite state Markov
decision process described in Example 2.1. The one-period reward is u(c) and the
feasible correspondence Γ is defined by C1–C3 above. The state is x = (i, d, z, η, κ)

and the state space X is the Cartesian product of {R,B,E}, for i, and the grids for
the remaining variables. The action is a = (i′, d′, c) and the sets of candidate value
functions are V = V = RX.

https://github.com/jstac/dp_deconstructed_code

19

A fast algorithm for solving this model is important because it allows for effective
exploration of the parameter space during the estimation step (by solving the model
many times at different parameterizations). We can greatly accelerate value function
iteration for this model by implementing a suitable plan factorization and then iterating
with the refactored Bellman operator S instead of the original Bellman operator T .
To see why this can deliver acceleration, recall from Figure 1 and the definition of S
in (9) that one iteration of S is a cycle starting from G = W0V, while T is a cycle
starting from V. If functions in G are simpler than functions in V then the former
will, in general, be faster than the latter. Similar comments apply when we consider
applying Sσ instead of Tσ, as occurs during policy function iteration.

For example, suppose that we adopt the plan factorization associated with the expected
value function transformation from Section 2.4.3. In view of the discussion in Exam-
ple 3.1, we know that refactored value function iteration and refactored policy function
iteration are convergent under this plan factorization. Moreover, since, G = W0V, a
typical element of G is a function g = W0 v, which, in view of the definition of the
expected value function in (12), has the form g(x, a) =

∑
x′∈X v(x

′)p(x, a, x′). In the
setting of (32), this becomes g(i′, d′, z) = E z′,η′,κ′|z v(i

′, d′, z′, η′, κ′). Significantly, while
the standard value function has five arguments, this refactored value function has only
three.

To test the expected speed gains, we perform two groups of numerical experiments. In
each case we compare traditional value function iteration (VFI, iterating with T) with
refactored value function iteration (RVFI, iterating with S). Regarding the primitives,
we set γ = 0.355, r̄ = 0.2 and u(c) = c1−σ/(1 − σ) with σ = 2.0. We assume that
{ηt}

iid∼ N(0, 0.043) and {zt} follows log zt+1 = ρ log zt + εt+1 with {εt}
iid∼ N(0, δ2).

Both are discretized via the method of Tauchen (1986). We discretize {κt} and {dt}
in equidistant steps, where {κt} is uniformly distributed on [0, 2] and the grid points
for d lie in [0, 10]. In Group-1, we set ρ = 0.99 and δ2 = 0.007 and compare the time
taken of VFI and RVFI for different levels of grid points and β values. In Group-2, we
set β = 0.98 and continue the analysis by comparing RVFI and VFI across different
grid sizes and (ρ, δ) values. The parameter values are broadly in line with Livshits
et al. (2007). Each scenario, we terminate iteration when distance between successive
iterates falls below 10−4 under the supremum norm. (The code uses Python with
Numba on a workstation with a 2.9 GHz Intel Core i7 and 32GB RAM.)

The results are shown in Tables 1–2. In particular, ratio therein represents the ratio of
time taken by VFI to that by RVFI. In both groups of experiments, reduced dimension-
ality significantly enhances computational efficiency. The speed improvement of RVFI
over VFI reaches two orders of magnitude under a relatively sparse grid and becomes

20

Table 1. Time taken in seconds: Group-1 experiments
grid size for (d, z, η, κ) method β = 0.94 β = 0.95 β = 0.96 β = 0.97 β = 0.98

(10, 10, 10, 10)

VFI 20.75 24.17 30.13 40.07 59.77
RVFI 0.88 0.89 1.07 1.23 1.49
Ratio 23.58 27.16 28.16 32.58 40.11

(12, 12, 12, 12)

VFI 92.78 110.06 138.15 184.59 277.13
RVFI 1.46 1.56 1.81 2.23 3.00
Ratio 63.55 70.55 76.33 82.78 92.38

(14, 14, 14, 14)

VFI 321.53 387.00 484.94 648.58 978.66
RVFI 2.55 2.91 3.49 4.65 6.40
Ratio 126.09 132.99 138.95 139.48 152.92

(16, 16, 16, 16)

VFI 1445.53 1738.22 2175.40 2904.84 4381.13
RVFI 4.92 5.75 7.12 9.45 13.65
Ratio 293.81 302.30 305.53 307.39 320.96

(18, 18, 18, 18)

VFI 2412.84 2889.44 3614.84 4865.62 7266.21
RVFI 10.94 12.92 16.14 21.99 33.06
Ratio 220.55 223.64 223.97 221.27 219.79

(20, 20, 20, 20)

VFI 5591.37 6737.69 8420.48 11355.90 17020.04
RVFI 19.78 23.80 31.16 41.00 62.09
Ratio 282.68 283.10 270.23 276.97 274.12

larger as the number of grid points increase—which is precisely when computational
efficiency is required. For example, when (ρ, δ) = (0.995, 0.2) and there are 16 grid
points for each state variable, RVFI is 525 times faster than VFI.

4.2. Optimal Stopping. Recall the plan factorization used in the optimal stopping
problem from Section 2.4.4, corresponding to (14). We showed in Example 3.2 that
the conclusions of Theorems 3.3–3.6 hold, so we can freely use either the traditional
Bellman operator or the refactored version to compute the optimal policy. The best
choice depends on relative numerical efficiency of the two operators.

One setting where the refactored Bellman operator is always more numerically efficient
is when the state can be decomposed as

xt = (yt, zt) ∈ Y × Z ⊂ Rℓ ×Rk, (33)

where (yt+1, zt+1) and yt are independent given zt.

21

Table 2. Time taken in seconds: Group-2 experiments
grid size for (d, z, η, κ) method ρ = 0.96 ρ = 0.97 ρ = 0.98 ρ = 0.995

(10, 10, 10, 10)

VFI 60.83 59.66 57.69 66.70
δ2 = 0.01RVFI 1.49 1.43 1.43 1.49

Ratio 40.83 41.72 40.34 44.77
VFI 68.43 62.49 59.73 75.71

δ2 = 0.04RVFI 1.65 1.48 1.44 1.39
Ratio 41.47 42.22 41.48 54.47

(12, 12, 12, 12)

VFI 255.11 274.48 268.12 327.55
δ2 = 0.01RVFI 2.98 2.89 2.96 3.36

Ratio 85.61 94.98 90.58 97.49
VFI 282.59 272.91 266.27 293.99

δ2 = 0.04RVFI 3.46 2.96 2.92 3.05
Ratio 81.67 92.20 91.19 96.39

(14, 14, 14, 14)

VFI 881.84 993.94 934.95 1012.90
δ2 = 0.01RVFI 6.25 6.53 6.18 6.66

Ratio 141.09 152.21 151.29 152.09
VFI 1045.88 892.71 928.10 984.25

δ2 = 0.04RVFI 7.47 6.24 6.18 6.64
Ratio 140.01 143.06 150.18 148.23

(16, 16, 16, 16)

VFI 2739.10 2722.26 3113.68 7827.82
δ2 = 0.01RVFI 12.81 12.75 14.50 15.03

Ratio 213.83 213.51 214.74 520.81
VFI 2843.06 2683.64 2984.70 7190.32

δ2 = 0.04RVFI 13.19 12.60 13.63 13.69
Ratio 215.55 212.99 218.98 525.22

The refactored Bellman operator from (14) then reduces to

(Sg)(z) =

∫
max {r(y′, z′), c(y′, z′) + βg(z′)}P (z, d(y′, z′)),

while the standard Bellman operator is

(Tv)(y, z) = max

{
r(y, z), c(y, z) + β

∫
v(y′, z′)P (z, d(y′, z′))

}
.

The key difference is that the functions v ∈ V, on which T acts, depend on both z and
y, whereas the functions g ∈ G on which S acts depend only on z. In other words, the
refactored Bellman operator acts on functions defined over a lower dimension space
than the original state space X = Y × Z. Hence, when the conditional independence

22

assumption in (33) is valid, the curse of dimensionality is mitigated by working with S
rather than T . Below we quantify the difference, after giving some examples of settings
where (33) holds.

Example 4.1. Consider the problem of pricing a real or financial option (see, e.g.,
Dixit and Pindyck (1994) or Kellogg (2014)). Let pt be the current price of the asset
and let {st} be a Markov process affecting asset price via pt = f(st, εt), where {εt} is
an iid innovation process independent of {st}. Each period, the agent decides whether
to exercise the option now (i.e., purchase the asset at the strike price) or wait and
reconsider next period. Note that (pt+1, st+1) and pt are independent given st. Hence,
this problem fits into the framework of (33) if we take yt = pt and zt = st.

Example 4.2. Consider a model of job search (see, e.g., McCall (1970)), in which
a worker receives current wage offer wt and chooses to either accept and work per-
manently at that wage, or reject the offer, receive unemployment compensation ηt
and reconsider next period. The worker aims to find an optimal decision rule that
yields maximum lifetime rewards. A typical formulation for the wage and compensa-
tion processes is that both are functions of an exogenous Markov process {st}, with
wt = f(st, εt) and ηt = ℓ(st, ξt) where f and ℓ are nonnegative continuous functions and
{εt} and {ξt} are independent, iid innovation processes (see, e.g., Low et al. (2010),
Bagger et al. (2014)). The state space for the job search problem is typically set to
(wt, ηt, st), where st is included because it can be used to forecast future draws of wt

and ηt. The conditional independence assumption in (33) holds if we take yt = (wt, ηt)

and zt = st.

Let us now compare the time complexity of VFI and RVFI, based on iterating T and
S respectively.

4.2.1. Finite State Case. Let Y = ×ℓ
i=1Y

i and Z = ×k
j=1Z

j, where Yi and Zj are subsets
of R. Each Yi (resp., Zj) is represented by a grid of Li (resp., Kj) points. Integration
operations in both VFI and RVFI are replaced by summations. We use P̂ and F̂ to
denote the probability transition matrices for VFI and RVFI respectively.

Let L := Πℓ
i=1Li and K := Πk

j=1Kj with L = 1 for ℓ = 0. Let k > 0. There are LK
grid points on X = Y× Z and K grid points on Z. The matrix P̂ is (LK)× (LK) and
F̂ is K × (LK). VFI and RVFI are implemented by the operators T̂ and Ŝ defined
respectively by

T̂ v⃗ := r⃗ ∨ (c⃗+ βP̂ v⃗) and Ŝg⃗z := F̂ [r⃗ ∨ (c⃗+ βg⃗)] .

23

Table 3. Time complexity: VFI v.s RVFI
Complexity VFI: 1-loop RVFI: 1-loop VFI: n-loop RVFI: n-loop

FS O(L2K2) O(LK2) O(nL2K2) O(nLK2)

CS O(NLK log(LK)) O(NK log(K)) O(nNLK log(LK)) O(nNK log(K))

Here q⃗ represents a column vector with i-th element equal to q(yi, zi), where (yi, zi) is
the i-th element of the list of grid points on Y× Z. q⃗z denotes the column vector with
the j-th element equal to q(zj), where zj is the j-th element of the list of grid points
on Z. The vectors v⃗, r⃗, c⃗ and g⃗ are (LK)× 1, while g⃗z is K × 1. Moreover, ∨ denotes
taking maximum.

4.2.2. Continuous State Case. We use the same number of grid points as before, but
now for continuous state function approximation rather than discretization. In partic-
ular, we replace the discrete state summation with Monte Carlo integration. Assume
that the transition law of the state process follows

yt+1 = f1(zt, εt+1), zt+1 = f2(zt, εt+1), {εt}
iid∼ Φ.

After drawing N Monte Carlo samples U1, · · · , UN
iid∼ Φ, RVFI and VFI are imple-

mented by

Ŝg(z) :=
1

N

N∑
i=1

max {r (f1(z, Ui), f2(z, Ui)) , c (f1(z, Ui), f2(z, Ui)) + βϕ⟨g⟩ (f2(z, Ui))}

and T̂ v(y, z) := max

{
r(y, z), c(y, z) + β

1

N

N∑
i=1

ψ⟨v⟩ (f1(z, Ui), f2(z, Ui))

}
.

Here g = {g(z)} with z in the set of grid points on Z, and v = {v(y, z)} with (y, z) in
the set of grid points on Y×Z. Moreover, ϕ⟨·⟩ and ψ⟨·⟩ are interpolating functions for
RVFI and VFI respectively. For example, ϕ⟨g⟩(z) interpolates the vector g to obtain
a function ϕ⟨g⟩ and then evaluates it at z.

4.2.3. Time Complexity. Table 3 provides the time complexity of RVFI and VFI, es-
timated by counting the number of floating point operations. Each such operation is
assumed to have complexity O(1), so is function evaluation associated with the model
primitives. Moreover, for continuous state case, binary search is used when we evaluate
the interpolating function at a given point, and our results hold for linear, quadratic,
cubic, and k-nearest neighbors interpolations.

For both finite state (FS) and continuous state (CS) cases, RVFI provides better perfor-
mance than VFI. For FS, RVFI is more efficient than VFI by order O(L), while for CS,

24

RVFI is so by order O (L log(LK)/ log(K)). For example, if we have 100 grid points
in each dimension, in the FS case, evaluating a given number of loops will take around
100ℓ times longer via VFI than via RVFI, after adjusting for order approximations.
See the Appendix (Section 6.3) for proof of Table 3 results.

4.3. Robust Control. In the robust control problem studied by Bidder and Smith
(2012) (see Hansen and Sargent (2008) for systematic discussion), an agent is endowed
with a benchmark model (of the system transition probabilities) but fears that it is
misspecified. While making decisions, she considers alternative distributions that are
distorted versions of the distribution implied by the benchmark, and balances the cost
that an implicit misspecification would cause against the plausibility of misspecifica-
tion. The state-action aggregator is given by

H(s, ε, u, v) = r(s, ε, u)− βθ log

[
E s′,ε′|s exp

(
−v(s

′, ε′)

θ

)]
with s′ = f(s, u, ε′),

where st is an endogenous state component and ut is a vector of controls. The full
state is xt = (st, εt), where {εt} is an iid innovation process. Rewards at time t are
r(st, εt, ut). Let θ > 0 be the penalty parameter that controls the degree of robustness.
The Bellman operator is

Tv(s, ε) = max
u

{
r(s, ε, u)− βθ log

[
E s′,ε′|s exp

(
−v(s

′, ε′)

θ

)]}
.

Consider the plan factorization (W0,W1) defined by

W0v(s) := −θ log
{
E s′,ε′|s exp

[
−v(s

′, ε′)

θ

]}
and W1g(s, ε, u) := r(s, ε, u) + βg(s).

The refactored Bellman operator S = W0MW1 is then

Sg(s) = −θ log
{
E s′,ε′|s exp

[
−maxu′ {r(s′, ε′, u′) + βg(s′)}

θ

]}
.

The maps W0 and W1 are monotone in the standard pointwise ordering for real valued
functions, and the other assumptions of Sections 2–3 hold in the setting of Bidder and
Smith (2012), so the conclusions of Theorems 3.3–3.6 hold. The details are omitted.
While the value function acts on both s and ε, the refactored value function acts only
on s. Hence, the refactored Bellman operator mitigates the curse of dimensionality,
similar to the outcomes in Sections 4.1 and 4.2.

25

5. Conclusion

This paper presents a systematic treatment of the technique of transforming Bell-
man equations associated with discrete time dynamic programs in order to convert
them into more advantageous forms. We formalized these transformations in terms
of what we called plan factorizations and showed how this concept encompasses and
extends existing transformations from the literature. We provided conditions related
to monotonicity under which the transformations preserve the most valuable property
of Bellman equations: their link to optimal value functions and optimal decisions.

The applications presented here focused on how transforming the Bellman equation can
mitigate the curse of dimensionality and thereby boost computational efficiency. There
are, however, other reasons to consider transformations of the Bellman equation. For
example, it might be that a given transformation leads to smoother value functions.
Smoother functions are easier to approximate in high dimensional spaces. It also
appears that some transformations of a given Bellman equation can shift the problem
from a setting of unbounded value functions to bounded ones, where characterization of
optimality becomes easier. While these ideas go beyond the scope of the current study,
the theory of plan factorizations presented here should serve as a solid foundation for
new work along these lines.

6. Appendix

The appendix provides all remaining proofs.

6.1. Preliminaries. Let Ei be a nonempty set and let τi be a mapping from Ei to
Ei+1 for i = 0, 1, 2 with addition modulo 3 (a convention we adopt throughout this
section). Consider the self-mappings

F0 := τ2 τ1 τ0, F1 := τ0 τ2 τ1 and F2 := τ1 τ0 τ2

on E0, E1 and E2 respectively. We then have

Fi+1 τi = τi Fi on Ei for i = 0, 1, 2. (34)

Lemma 6.1. For each i = 0, 1, 2,

(1) if ϱ is a fixed point of Fi in Ei, then τi ϱ is a fixed point of Fi+1 in Ei+1.
(2) F n

i+1 τi = τi F
n
i on Ei for all n ∈ N.

26

Proof. Regarding part (a), if ϱ is a fixed point of Fi in Ei, then (34) yields Fi+1τi ϱ =

τi Fiϱ = τi ϱ, so τi ϱ is a fixed point of Fi+1. Regarding part (b), fix i in {0, 1, 2}. By
(34), the statement in (b) is true at n = 1. Let it also be true at n − 1. Then, using
(34) again, F n

i+1 τi = F n−1
i+1 Fi+1 τi = F n−1

i+1 τi Fi = τi F
n−1
i Fi = τi F

n
i . We conclude

that (b) holds at every n ∈ N. �

Lemma 6.2. If Fi has a unique fixed point ϱi in Ei for some i in {0, 1, 2}, then τi ϱi
is the unique fixed point of Fi+1 in Ei+1.

Proof. We have already proved all but uniqueness. To see that uniqueness holds, fix
i ∈ {0, 1, 2} and suppose that Fi has only one fixed point in Ei, whereas Fi+1 has
two fixed points in Ei+1. Denote the fixed points of Fi+1 by ϱ and f . Applying part
(a) of Lemma 6.1 twice, we see that τi+2 τi+1 ϱ and τi+2 τi+1 f are both fixed points of
Fi+3 = Fi. Since Fi has only one fixed point, τi+2 τi+1 ϱ = τi+2 τi+1 f . Applying τi to
both sides of the last equality gives Fi+1ϱ = Fi+1f . Since ϱ and f are both fixed points
of Fi+1, we conclude that ϱ = f and the fixed point is unique. �

6.2. Proof of Sections 2–3 Results. When connecting to the results in Section 6.1,
we always take τ0 = W0 and τ1 = W1. The map τ2 and the candidate spaces E0, E1

and E2 will vary depending on the context.

Proof of Proposition 2.1. The claims are immediate from Lemma 6.1. Regarding iter-
ations on S and T , we set E0 = V, E1 = G, E2 = H and τ2 =M . Regarding iterations
on Sσ and Tσ, we fix σ ∈ Σ and set E0 = V , E1 = G, E2 = H and τ2 =Mσ. �

Proof of Proposition 2.2. The claims are immediate by Lemmas 6.1–6.2 (let E0 = V,
E1 = G, E2 = H and τ2 =M). �

Proof of Proposition 2.3. Similar to the proof of Proposition 2.2, this result is imme-
diate from Lemmas 6.1–6.2 once we set E0 = V , E1 = G, E2 = H and τ2 =Mσ. �

Proof of Theorem 3.2. Now suppose that (a) of Theorem 3.2 holds, so that g∗ ∈ G and
Sg∗ = g∗. We claim that (b) holds, i.e., v∗ ∈ V and Tv∗ = v∗. Based on Lemma 6.1
(in particular, let E0 = V, E1 = G, E2 = H and τ2 = M), we only need to show that
v∗ =MW1g

∗.

Pick any σ ∈ Σ. We have

vσ =MσW1gσ 6MW1gσ 6MW1g
∗,

27

where the equality is due to Assumption 2.2 and Proposition 2.3, the first inequality
is due to the fact that M pointwise dominates Mσ, and the second follows from the
definition of g∗ and the monotonicity of M and W1. As σ was arbitrary, this proves
that v∗ 6MW1g

∗.

Regarding the reverse inequality, from g∗ = Sg∗ ∈ G, there exists a v ∈ V such that
g∗ = W0v. Assumption 2.1 then implies the existence of a σ such that MW1g

∗ =

MW1W0v = MσW1W0v = MσW1g
∗. Hence, Sg∗ = W0MW1g

∗ = W0MσW1g
∗ = Sσg

∗.
We see that g∗ is a fixed point of Sσ in G. Since gσ is the unique fixed point of Sσ in
G by Assumption 2.2 and Proposition 2.3, we have g∗ = gσ. As a result, MW1g

∗ =

MσW1gσ = vσ 6 v∗. We have now shown that (b) holds.

The claim that (b) implies (a) is similar. In particular, based on Lemma 6.1, it suffices
to show that g∗ = W0v

∗. Pick any σ ∈ Σ. Since gσ = W0vσ 6 W0v
∗ by Assumption 2.2,

Proposition 2.3 and the monotonicity of W0, it follows that g∗ 6 W0v
∗. Moreover, since

v∗ ∈ V, Assumption 2.1 implies the existence of a σ such that Tv∗ = Tσv
∗. Since in

addition v∗ = Tv∗, it follows that v∗ is a fixed point of Tσ and thus v∗ = vσ by
Assumption 2.2. We then have W0v

∗ = W0vσ = gσ 6 g∗. In summary, we have
g∗ = W0v

∗ and claim (a) is now verified.

The claim that g∗ = ĝ under (a)–(b) translates to the claim that g∗ = W0v
∗, which we

have already shown in the previous step.

The claim in Theorem 3.2 that at least one optimal policy exists under either (a) or (b)
follows from the equivalence of (a) and (b) just established combined with Theorem 3.1.

Finally, suppose that (a) holds and consider the last claim in Theorem 3.2, which can
be expressed succinctly as

vσ = v∗ ⇐⇒ Tσv
∗ = Tv∗ ⇐⇒ MσW1g

∗ =MW1g
∗.

Regarding the first equivalence, if vσ = v∗, then Tσv
∗ = Tσvσ = vσ = v∗ = Tv∗.

Conversely, if Tσv∗ = Tv∗, then, since v∗ = Tv∗ and, by Assumption 2.2, vσ is the
only fixed point of Tσ in V , we have vσ = v∗. The second equivalence follows, since, by
the relations gσ = W0vσ and g∗ = W0v

∗, we have: Tσv∗ = MσW1W0v
∗ = MσW1g

∗ and
Tv∗ = MW1W0v

∗ = MW1g
∗. The last claim in Theorem 3.2 is now established. This

concludes the proof. �

Proof of Theorem 3.3. We need only show that (a) holds, since the remaining claims
follow directly from the hypotheses of the theorem, claim (a), the definition of asymp-
totic stability (for part (b)) and Theorem 3.2 (for parts (c) and (d)).

28

To see that (a) holds, note that, by the stated hypotheses, S has a unique fixed point
in G, which we denote below by ḡ. Our aim is to show that ḡ = g∗.

First observe that, by Assumption 2.1, there is a σ ∈ Σ such that Sσḡ = Sḡ = ḡ. But,
by Assumption 2.2 and Proposition 2.3, Sσ has exactly one fixed point, which is the
refactored σ-value function gσ. Hence ḡ = gσ. In particular, ḡ 6 g∗.

To see that the reverse inequality holds, pick any σ ∈ Σ and note that, by the definition
of S, we have ḡ = Sḡ > Sσḡ. We know that Sσ is monotone on G, since this operator
is the composition of three monotone operators (W0 and W1 by assumption and Mσ

automatically). Hence we can iterate on the last inequality to establish ḡ > Sk
σ ḡ

for all k ∈ N. Taking limits and using the fact that the partial order is closed, Sσ

is asymptotically stable and, as shown above, gσ is the unique fixed point, we have
ḡ > gσ. Since σ was chosen arbitrarily, this yields ḡ > g∗. Part (a) of Theorem 3.3 is
now verified. �

Proof of Proposition 3.4. As a closed subset of bκF under the ∥·∥κ-norm metric, the set
G is complete under the same metric and, by (29) and the Banach contraction mapping
theorem, each Sσ is asymptotically stable on G. Moreover, the pointwise partial order
6 is closed under this metric. Thus, to verify the conditions of Theorem 3.3, we need
only show that S is asymptotically stable on G under the same metric. To this end,
we first claim that, under the stated assumptions,

Sg(x, a) = sup
σ∈Σ

Sσg(x, a) for all (x, a) ∈ F and g ∈ G. (35)

To see that (35) holds, fix g ∈ G. Notice that the definition of M implies that
MW1 g > MσW1 g for any σ ∈ Σ and hence, applying W0 to both sides and using
monotonicity yield Sg > Sσg for all σ ∈ Σ. Moreover, by the definition of G and
Assumption 2.1, there exists a g-greedy policy σ∗ ∈ Σ such that MW1 g = Mσ∗ W1 g,
and applying W0 to both sides again gives Sg = Sσ∗g. Hence (35) is valid.

Now fix g, g′ ∈ G and (x, a) ∈ F. By (35) and the contraction condition on Sσ in (29),
we have

|Sg(x, a)− Sg′(x, a)| = | sup
σ∈Σ

Sσg(x, a)− sup
σ∈Σ

Sσg
′(x, a)| 6 sup

σ∈Σ
|Sσg(x, a)− Sσg

′(x, a)|,

∴ |Sg(x, a)− Sg′(x, a)|
κ(x, a)

6 sup
σ∈Σ

∥Sσg − Sσg
′∥κ 6 α∥g − g′∥κ.

Taking supremum gives ∥Sg−Sg′∥κ 6 α ∥g−g′∥κ, so S is a contraction onG of modulus
α. Since in addition G is a closed subset of bκF under the ∥ · ∥κ-norm metric, it is a
Banach space under the same norm. The Banach contraction mapping theorem then

29

implies that S is asymptotically stable on G. Since all the conditions of Theorem 3.3
are verified, its conclusions follow. �

Proof of Theorem 3.5. Without loss of generality, we assume that mk ≡ m for all
k ∈ N0. When k = 0, by definition,

Σv
0 = {σ ∈ Σ: MσW1W0v0 =MW1W0v0} = {σ ∈ Σ: MσW1g0 =MW1g0} = Σg

0,

i.e., the sets of v0-greedy and g0-greedy policies are identical. This in turn implies that
a policy σ0 ∈ Σ is v0-greedy if and only if it is g0-greedy. Moreover, by Proposition 2.1,

g1 = Sm
σ0
g0 = W0T

m−1
σ0

Mσ0W1g0

= W0T
m−1
σ0

Mσ0W1W0v0 = W0T
m−1
σ0

Tσ0v0 = W0T
m
σ0
v0 = W0v1.

The related claims are verified for k = 0. Suppose these claims hold for arbitrary k.
It remains to show that they hold for k + 1. By the induction hypothesis, Σv

k = Σg
k,

a policy σk ∈ Σ is vk-greedy if and only if it is gk-greedy, and gk+1 = W0vk+1. By
definition of the greedy policy,

Σv
k+1 = {σ ∈ Σ: MσW1W0vk+1 =MW1W0vk+1}

= {σ ∈ Σ: MσW1gk+1 =MW1gk+1} = Σg
k+1,

i.e., a policy σk+1 ∈ Σ is vk+1-greedy if and only if it is gk+1-greedy. Moreover, by
Proposition 2.1,

gk+2 = Sm
σk+1

gk+1 = W0T
m−1
σk+1

Mσk+1
W1gk+1

= W0T
m−1
σk+1

Mσk+1
W1W0vk+1 = W0T

m
σk+1

vk+1 = W0vk+2.

Hence, the related claims of the proposition hold for k + 1, completing the proof. �

Proof of Theorem 3.6. Without loss of generality, we assume mk ≡ m for all k ∈ N0.
Let {ζk} be defined by ζ0 := g0 and ζk := S ζk−1. We show by induction that

ζk 6 gk 6 g∗ and gk 6 Sgk for all k ∈ N0. (36)

Note that g0 6 Sg0 by assumption. Since S is monotone, this implies that g0 6 Stg0
for all t ∈ N0. Letting t → ∞, Theorem 3.3 implies that g0 6 g∗. Since in addition
ζ0 = g0, (36) is satisfied for k = 0. Suppose this claim holds for arbitrary k ∈ N0.
Then, since S and Sσk

are monotone,

gk+1 = Sm
σk
gk 6 SSm−1

σk
gk 6 SSm−1

σk
Sgk = SSm

σk
gk = Sgk+1,

where the first inequality holds by the definition of S, the second inequality holds since
gk 6 Sgk (the induction hypothesis), and the second equality is due to σk ∈ Σg

k. Hence,
gk+1 6 Stgk+1 for all t ∈ N0. Letting t→ ∞ yields gk+1 6 g∗.

30

Similarly, since gk 6 Sgk = Sσk
gk, we have gk 6 Sm−1

σk
gk and thus

ζk+1 = Sζk 6 Sgk = Sσk
gk 6 Sm

σk
gk = gk+1.

Hence, (36) holds by induction. The monotonicity of Sσk
implies that gk 6 Sgk =

Sσk
gk 6 · · · 6 Sm

σk
gk = gk+1 for all k ∈ N0. Hence, {gk} is increasing in k. Moreover,

since ζk → g∗ by Theorem 3.3, (36) implies that gk → g∗ as k → ∞. �

6.3. Proof of Section 4.2 Results. To prove the results of Table 3, recall that
floating point operations are any elementary actions (e.g., +, ×, max, min) on or
assignments with floating point numbers. If f and h are scalar functions on Rn, we
write f(x) = O(h(x)) whenever there exist C,M > 0 such that ∥x∥ > M implies
|f(x)| 6 C|h(x)|, where ∥ · ∥ is the sup norm. We introduce some elementary facts on
time complexity:

(a) The multiplication of an m × n matrix and an n × p matrix has complexity
O(mnp). (See, e.g., Section 2.5.4 of Skiena (2008).)

(b) The binary search algorithm finds the index of an element in a given sorted
array of length n in O(log(n)) time. (See, e.g., Section 4.9 of Skiena (2008).)

For the finite state (FS) case, time complexity of 1-loop VFI reduces to the complexity
of matrix multiplication P̂ v⃗, which is of order O(L2K2) based on the shape of P̂ and v⃗
and fact (a) above. Similarly, time complexity of 1-loop RVFI has complexity O(LK2).
Time complexity of n-loop algorithms is scaled up by O(n).

For the continuous state (CS) case, let O(ϕ) and O(ψ) denote respectively the com-
plexity of single point evaluation of the interpolating functions ϕ and ψ. Counting the
floating point operations associated with all grid points inside the inner loops shows
that the one step complexities of VFI and RVFI are O(NLK)O(ψ) and O(NK)O(ϕ),
respectively. Since binary search function evaluation is adopted for the indicated func-
tion interpolation mechanisms, and in particular, since evaluating ψ at a given point
uses binary search ℓ+ k times, based on fact (b) above, we have

O(ψ) = O

(
ℓ∑

i=1

log(Li) +
k∑

j=1

log(Kj)

)
= O

(
log
(
Πℓ

i=1Li

)
+ log

(
Πk

j=1Kj

))
= O(log(LK)).

Similarly, we can show that O(ϕ) = O(log(K)). Combining these results, we see that
the claims of the CS case hold, concluding our proof of Table 3 results.

31

6.4. Counterexamples. In this section, we provide counterexamples showing that
monotonicity of W0 and W1 cannot be dropped from Theorem 3.2. Recall that E y|x

denotes the expectation of y conditional on x.

6.4.1. Counterexample 1. Here we exhibit a dynamic program and value transforma-
tion under which Tv∗ = v∗, Sg∗ ̸= g∗ and g∗ ̸= ĝ. The example involves risk sensitive
preferences.

Let X := {1, 2}, A := {0, 1}, V = V := RX and Σ := {σ1, σ2, σ3, σ4}, where the policy
functions are

x σ1(x) σ2(x) σ3(x) σ4(x)

1 0 0 1 1

2 0 1 1 0

In state x, choosing action a gives the agent an immediate reward x − a. If a = 0,
then the next period state x′ = 1, while if a = 1, the next period state x′ = 2. Let the
state-action aggregator H take the risk-sensitive form

H(x, a, v) = x− a− β

γ
logE x′|a exp[−γv(x′)].

Then the Bellman operator T is

Tv(x) = max
a∈{0,1}

{
x− a− β

γ
logE x′|a exp[−γv(x′)]

}
= max {x+ βv(1), x− 1 + βv(2)} .

Consider the plan factorization (W0,W1) given by

W0 v(a) := E x′|a exp[−γv(x′)] and W1 g(x, a) := x− a− β

γ
log g(a).

The refactored Bellman operator is then

Sg(a) = E x′|a exp

(
−γ max

a′∈{0,1}

{
x′ − a′ − β

γ
log g(a′)

})
.

Note that neither W1 nor W0 is monotone. In the following, we assume that β ∈ (0, 1).

Lemma 6.3. The σ-value functions are as follows:

x vσ1(x) vσ2(x) vσ3(x) vσ4(x)

1 1/(1− β) 1/(1− β) β/(1− β) 2β/(1− β2)

2 (2− β)/(1− β) 1/(1− β) 1/(1− β) 2/(1− β2)

32

Proof. Regarding vσ1 , by definition,

vσ1(1) = 1− σ1(1)−
β

γ
logE x′|σ1(1) exp[−γvσ1(x

′)] = 1 + βvσ1(1)

and vσ1(2) = 2− σ1(2)−
β

γ
logE x′|σ1(2) exp[−γvσ1(x

′)] = 2 + βvσ1(1).

Hence, vσ1(1) = 1/(1 − β) and vσ1(2) = (2 − β)/(1 − β). The remaining proofs are
similar. �

Based on Lemma 6.3, the value function v∗ is given by

v∗(1) = max
σi

vσi
(1) = vσ1(1) = vσ2(1) = 1/(1− β)

and v∗(2) = max
σi

vσi
(2) = vσ1(2) = (2− β)/(1− β).

Moreover, we have v∗ = Tv∗, since

Tv∗(1) = max{1 + βv∗(1), βv∗(2)} = 1/(1− β) = v∗(1)

and Tv∗(2) = max{2 + βv∗(1), 1 + βv∗(2)} = (2− β)/(1− β) = v∗(2).

Lemma 6.4. The refactored σ-value functions are as follows:

a gσ1(a) gσ2(a) gσ3(a) gσ4(a)

0 exp[−γ/(1− β)] exp[−γ/(1− β)] exp[−γβ/(1− β)] exp[−2γβ/(1− β2)]

1 exp[−γ(2− β)/(1− β)] exp[−γ/(1− β)] exp[−γ/(1− β)] exp[−2γ/(1− β2)]

Proof. Regarding gσ1 , by definition,

gσ1(0) = E x′|0 exp

(
−γ
{
x′ − σ1(x

′)− β

γ
log gσ1 [σ1(x

′)]

})
= exp

(
−γ
[
1− β

γ
log gσ1(0)

])
= exp(−γ)gσ1(0)

β

and gσ1(1) = E x′|1 exp

(
−γ
{
x′ − σ1(x

′)− β

γ
log gσ1 [σ1(x

′)]

})
= exp

(
−γ
[
2− β

γ
log gσ1(0)

])
= exp(−2γ)gσ1(0)

β.

So gσ1(0) and gσ1(1) are as shown in the table. The remaining proofs are similar. �

Based on Lemma 6.4, the refactored value function g∗ satisfies

g∗(0) = max
σi

gσi
(0) = gσ3(0) = exp[−γβ/(1− β)]

and g∗(1) = max
σi

gσi
(0) = gσ2(1) = gσ3(1) = exp[−γ/(1− β)].

33

Since ĝ(0) = W0v
∗(0) = exp[−γv∗(1)] = exp[−γ/(1− β)] ̸= g∗(0), we see that g∗ ̸= ĝ.

Moreover,

Sg∗(0) = exp

(
−γmax

{
1− β

γ
log g∗(0),−β

γ
log g∗(1)

})
= exp[−γ(1− β + β2)/(1− β2)] ̸= g∗(0).

Hence, g∗ ̸= Sg∗. The refactored value function is not a fixed point of the refactored
Bellman operator.

6.4.2. Counterexample 2. We now exhibit a dynamic program and plan factorization
under which Sg∗ = g∗, Tv∗ ̸= v∗ and g∗ ̸= ĝ.

The set up is same as Section 6.4.1, except that we let β > 1. In this case, Lemmas 6.3–
6.4 still hold and, as in Section 6.4.1, the value function and refactored value function
satisfy

v∗(1) = 1/(1− β), v∗(2) = (2− β)/(1− β),

g∗(0) = exp[−γβ/(1− β)] and g∗(1) = exp[−γ/(1− β)].

We have seen in Section 6.4.1 that g∗ ̸= ĝ. Since in addition

Sg∗(0) = exp

(
−γmax

{
1− β

γ
log g∗(0),−β

γ
log g∗(1)

})
= exp[−γβ/(1− β)] = g∗(0)

and Sg∗(1) = exp

(
−γmax

{
2− β

γ
log g∗(0), 1− β

γ
log g∗(1)

})
= exp[−γ/(1− β)] = g∗(1),

we have Sg∗ = g∗ as claimed. However, since

Tv∗(1) = max

{
1− β

γ
logE x′|0 exp[−γv∗(x′)], −

β

γ
logE x′|1 exp[−γv∗(x′)]

}
= max{1 + βv∗(1), βv∗(2)} = (2β − β2)/(1− β) ̸= v∗(1),

we have Tv∗ ̸= v∗, so the value function is not a fixed point of the Bellman operator.

References

Bagger, J., F. Fontaine, F. Postel-Vinay, and J.-M. Robin (2014): “Tenure,
experience, human capital, and wages: A tractable equilibrium search model of wage
dynamics,” American Economic Review, 104, 1551–96.

34

Bäuerle, N. and A. Jaśkiewicz (2018): “Stochastic optimal growth model with
risk sensitive preferences,” Journal of Economic Theory, 173, 181–200.

Bellman, R. (1957): Dynamic programming, Academic Press.
Bertsekas, D. P. (2012): Dynamic programming and optimal control, vol. 2, Athena

Scientific, 4th ed.
——— (2013): Abstract dynamic programming, Athena Scientific.
Bertsekas, D. P. and H. Yu (2012): “Q-learning and enhanced policy iteration in

discounted dynamic programming,” Mathematics of Operations Research, 37, 66–94.
Bidder, R. M. and M. E. Smith (2012): “Robust animal spirits,” Journal of

Monetary Economics, 59, 738–750.
Bloise, G. and Y. Vailakis (2018): “Convex dynamic programming with (bounded)

recursive utility,” Journal of Economic Theory, 173, 118–141.
Dixit, A. K. and R. S. Pindyck (1994): Investment Under Uncertainty, Princeton

University Press.
Hansen, L. P. and T. J. Sargent (2008): Robustness, Princeton university press.
Iyengar, G. N. (2005): “Robust dynamic programming,” Mathematics of Operations

Research, 30, 257–280.
Kellogg, R. (2014): “The effect of uncertainty on investment: evidence from Texas

oil drilling,” The American Economic Review, 104, 1698–1734.
Kochenderfer, M. J. (2015): Decision making under uncertainty: theory and ap-

plication, MIT press.
Kristensen, D., P. Mogensen, J. M. Moon, and B. Schjerning (2018): “Solv-

ing Dynamic Discrete Choice Models Using Smoothing and Sieve Methods,” Tech.
rep., University of Copenhagen.

Livshits, I., J. MacGee, and M. Tertilt (2007): “Consumer bankruptcy: A fresh
start,” American Economic Review, 97, 402–418.

Low, H., C. Meghir, and L. Pistaferri (2010): “Wage risk and employment risk
over the life cycle,” American Economic Review, 100, 1432–67.

Marinacci, M. and L. Montrucchio (2010): “Unique solutions for stochastic
recursive utilities,” Journal of Economic Theory, 145, 1776–1804.

McCall, J. J. (1970): “Economics of information and job search,” The Quarterly
Journal of Economics, 113–126.

Monahan, G. E. (1980): “Optimal stopping in a partially observable Markov process
with costly information,” Operations Research, 28, 1319–1334.

Munos, R. and C. Szepesvári (2008): “Finite-time bounds for fitted value itera-
tion,” Journal of Machine Learning Research, 9, 815–857.

35

Peskir, G. and A. Shiryaev (2006): Optimal stopping and free-boundary problems,
Springer.

Powell, W. B. (2007): Approximate Dynamic Programming: Solving the curses of
dimensionality, vol. 703, John Wiley & Sons.

Puterman, M. L. and M. C. Shin (1982): “Action elimination procedures for
modified policy iteration algorithms,” Operations Research, 30, 301–318.

Rust, J. (1987): “Optimal replacement of GMC bus engines: An empirical model of
Harold Zurcher,” Econometrica, 999–1033.

——— (1994): “Structural estimation of Markov decision processes,” Handbook of
Econometrics, 4, 3081–3143.

——— (1996): “Numerical dynamic programming in economics,” Handbook of Com-
putational Economics, 1, 619–729.

Ruszczyński, A. (2010): “Risk-averse dynamic programming for Markov decision
processes,” Mathematical Programming, 125, 235–261.

Skiena, S. S. (2008): The Algorithm Design Manual, Springer, London.
Tauchen, G. (1986): “Finite state markov-chain approximations to univariate and

vector autoregressions,” Economics letters, 20, 177–181.

	1. Introduction
	2. General Formulation
	2.1. Problem Statement
	2.2. Policies and Assumptions
	2.3. Decompositions and Plan Factorizations
	2.4. Examples
	2.5. Refactored Policy Values
	2.6. Fixed Points and Iteration

	3. Optimality
	3.1. Fixed Points and Optimal Policies
	3.2. Sufficient Conditions
	3.3. Policy Iteration

	4. Applications
	4.1. Consumer Bankruptcy
	4.2. Optimal Stopping
	4.3. Robust Control

	5. Conclusion
	6. Appendix
	6.1. Preliminaries
	6.2. Proof of Sections 2–3 Results
	6.3. Proof of Section 4.2 Results
	6.4. Counterexamples

	References

