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APPENDIX D. AN IDENTIFICATION EQUIVALENCE RESULT

Consider an economy E with linear inverse demand function p(x) = a + dx where a > 0
and d < 0. Let {Yt} be a stationary Markov process with transition probability Ψ. Let b be
the lower bound of the total available supply in this economy.

Let Ẽ be another economy where the output process satisfies Ỹt = µ + σYt with σ > 0
and the transition probability of {Ỹt} satisfies1

Ψ̃(y, Ŷ) = Ψ

(
y − µ

σ
,

Ŷ − µ

σ

)
. (D.1)

Moreover, let the lower bound of the total available supply of economy Ẽ be b̃ = µ + σb
and the inverse demand function be

p̃(x) =
(

a − dµ

σ

)
+

d
σ

x. (D.2)

The remaining assumptions are the same across economies E and Ẽ.

Proposition D.1. Ẽ and E generate the same commodity price process.

Proof. To simplify notation, let f and i be the equilibrium pricing function and the equilib-
rium inventory function of the baseline economy E. Without loss of generality, we may
assume Zt = Yt.2 Then for all (x, y) ∈ S, { f (x, y), i(x, y)} is the unique solution to

f (x, y) = min
{

max
{

e−δ
Ey M̂ f [e−δi(x, y) + Ŷ, Ŷ]− k, p(x)

}
, p(b)

}
(D.3)

i(x, y) =

{
x − p−1[ f (x, y)], x < x f (y)
x f (y)− p−1(0), x ≥ x f (y)

(D.4)

where
x f (y) := inf

{
x ≥ p−1(0) : f (x, y) = 0

}
.

1Condition (D.1) obviously holds if, for example, {Yt} is IID and follows a truncated normal distribution
with mean µ0, variance σ2

0 , and truncation thresholds yl < yu. Because in this case, {Ỹt} is IID and follows
a truncated normal distribution as well, with mean µ + σµ0, variance σ2σ2

0 , and truncation thresholds
µ + σyl < µ + σyu. Note that (D.1) does not hold if {Yt} and {Ỹt} do not follow the same type of distribution.
For example, it does not hold if {Yt} is IID lognormally distributed, since {Ỹt} is not lognormally distributed
as a linear transform of {Yt}.

2In general, Zt is a multivariate Markov process and Yt corresponds to one dimension of Zt.
1



Consider economy Ẽ, where all magnitudes are denoted with tildes. Let

x̃ = µ + σx, ỹ = µ + σy,

m̃(ỹ, ε) = m(y, ε), f̃ (x̃, ỹ) = f (x, y), ı̃(x̃, ỹ) = σ i(x, y). (D.5)

To prove the statement of the proposition, it suffices to show that { f̃ (x̃, ỹ), ı̃(x̃, ỹ)} is the
unique solution to

f̃ (x̃, ỹ) = min
{

max
{

e−δ
Eỹ

ˆ̃M f̃ [e−δ ı̃(x̃, ỹ) + ˆ̃Y, ˆ̃Y], p̃(x̃)
}
− k, p̃(b̃)

}
(D.6)

ı̃(x̃, ỹ) =

{
x̃ − p̃−1[ f̃ (x̃, ỹ)], x̃ > x f̃ (ỹ)

x f̃ (ỹ)− p̃−1(0), x̃ ≤ x f̃ (ỹ)
(D.7)

where
x f̃ (ỹ) := inf

{
x̃ ≥ p̃−1(0) : f̃ (x̃, ỹ) = 0

}
.

This is true by referring to (D.3)–(D.4). In particular, by (D.2) and (D.5),

ˆ̃M = m̃( ˆ̃Y, ε̂) = m(Ŷ, ε̂) = M̂, p̃(x̃) = p(x) and p̃(b̃) = p(b).

Furthermore, Ψ̃(ỹ, ˆ̃Y) = Ψ(y, Ŷ) by the definition in (D.1) and

f̃
[
e−δ ı̃(x̃, ỹ) + ˆ̃Y, ˆ̃Y

]
= f̃

[
e−δσi(x, y) + µ + σŶ, ˆ̃Y

]
= f̃

[
µ + σ

(
e−δi(x, y) + Ŷ

)
, ˆ̃Y
]
= f

[
e−δi(x, y) + Ŷ, Ŷ

]
.

The above analysis implies that (D.6) holds. To see that (D.7) holds, note that

x f̃ (ỹ) = inf
{

µ + σx ≥ µ − aσ

d
: f (x, y) = 0

}
= µ + σ inf

{
x ≥ p−1(0) : f (x, y) = 0

}
= µ + σx f (y),

where we have used the definition of p and p̃. This yields x̃ < x f̃ (ỹ) iff x < x f (y). In
combination with (D.4), we obtain

ı̃(x̃, ỹ) = σi(x, y) =

{
σ
(
x − p−1[ f (x, y)]

)
, x̃ < x f̃ (ỹ),

σ
(
x f (y)− p−1(0)

)
, x̃ ≥ x f̃ (ỹ).

When x̃ < x f̃ (ỹ), using (D.5) and the definition of p and p̃, we obtain

σ
(

x − p−1[ f (x, y)]
)
= σx − σp−1[ f̃ (x̃, ỹ)]

= x̃ − µ − σ

(
f̃ (x̃, ỹ)− a

d

)
= x̃ − p̃−1[ f̃ (x̃, ỹ)].

When x̃ ≥ x f̃ (ỹ), using the definition of p and p̃ again yields

σ
(

x f (y)− p−1(0)
)
= x f̃ (ỹ)− µ +

aσ

d
= x f̃ (ỹ)− p̃−1(0).
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The above analysis implies that (D.7) holds. Therefore, economies E and Ẽ generate the
same commodity price process. □

APPENDIX E. ALGORITHMS

The storage model is solved by a modified version of the endogenous grid method of
Carroll (2006). The candidate space C and p̄ f (z) are as defined in Appendix A. We derive
the following property in order to handle free-disposal and state-dependent discounting
in the numerical computation.

Lemma E.1. For each f in the candidate space C , if x > p−1[ p̄ f (z)], then

T f (x, z) = max
{

min
{

e−δ
Ez M̂ f

(
e−δ

(
x − p−1[T f (x, z)]

)
+ Ŷ, Ẑ

)
− k, p(b)

}
, 0
}

.

If in addition p̄0
f (z) ≤ p(b), then

T f (x, z) = max
{

e−δ
Ez M̂ f

(
e−δ

(
x − p−1[T f (x, z)]

)
+ Ŷ, Ẑ

)
− k, 0

}
.

Proof. The first statement is immediate by Lemma A.5 (ii)–(iii) and the fact that T f (x, z)
is decreasing in x. The second statement follows from the definition of p̄0

f (z) and the
monotonicity of f in its first argument as a candidate in C . □

E.1. The Endogenous Grid Algorithm. We define a finite Markov Chain {Zt}.3 The
states are indexed by j and m, and the transition matrix has elements Φj,m. Moreover,
we use D(x, z) = p−1[ f (x, z)] to denote a candidate equilibrium demand function. The
endogenous grid algorithm for computing the equilibrium pricing rule is described in
Algorithm 1.

In particular, we choose to approximate the demand function D(x, z) in Step 2 instead
of the price function f (x, z). This is helpful for improving both precision and stability of
the algorithm when the demand function diverges at the lower bound of the endogenous
state space. A typical example is the exponential demand p(x) = x−1/λ(λ > 0), which is
commonly adopted by applied research (see, e.g., Deaton and Laroque, 1992; Gouel and
Legrand, 2022). If the inverse demand function is linear as in Section 4, however, then it is
innocuous to approximate the price function directly.

Moreover, the validity and convergence of the updating process in Step 3 are justified by
Theorem A.1, Lemma A.5, and Lemma E.1 above.

3In the model with only the speculative channel, we discretize the interest rate process following Tauchen
(1986) and use a Markov chain with N = 101 states. In the model with the demand channel, we discretize the
VAR model representing the joint dynamics of interest rate and economic activity following Schmitt-Grohé
and Uribe (2014).
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Algorithm 1 The endogenous grid algorithm

Step 1. Initialization step. Choose a convergence criterion ϖ > 0, a grid on storage {Is} starting at
0, a grid on discount factor shocks for numerical integration {ε l} with associated weights
ωl , a grid on production shocks for numerical integration {ηn} with associated weights wn,
and an initial policy rule (guessed): {X1

s,j} and {P1
s,j}. Start iteration at i = 1.

Step 2. Update the demand function via linear interpolation and extrapolation:

p−1
(

Pi
s,j

)
= Di

(
Xi

s,j, Zj

)
. (E.1)

Step 3. Obtain prices and availability consistent with the grid of stocks and Markov Chain:

Pi+1
s,j = max

{
min

{
P̃i+1

s,j , p(b)
}

, 0
}

and Xi+1
s,j = Is + p−1

(
Pi+1

s,j

)
, (E.2)

where

P̃i+1
s,j = e−δ ∑

l,m,n
ωlΦj,mwnm (Zm, ε l) p

(
Di
(

y (Zm, ηn) + e−δ Is, Zm

))
− k.

Step 4. Terminal step. If maxs,j |Pi+1
s,j − Pi

s,j| ≥ ϖ then increment i to i+ 1 and go to step 2. Otherwise,
approximate the equilibrium pricing rule by f ∗(x, z) = p[Di(x, z)].

E.2. Solution Precision. To evaluate the precision of the numerical solution, we refer to a
suitably adjusted version of the bounded rationality measure originally designed by Judd
(1992), which we name as the Euler equation error and measures how much solutions
violate the optimization conditions. In the current context, it is defined at state (x, z) as

EE f (x, z) = 1 − D1(x, z)
D2(x, z)

,

where f is the numerical solution of the equilibrium price,

D1(x, z) = p−1
[
min

{
max

{
e−δ

Ez M̂ f (X̂, Ẑ)− k, p(x)
}

, p(b)
}]

− b

and D2(x, z) = p−1[ f (x, z)]− b. In particular, both D1(x, z) and D2(x, z) are expressed in
terms of the relative demand for commodity, since b is the greatest lower bound (hence
corresponds to the zero level) of the total available supply. Therefore, EE f (x, z) measures
the error at state (x, z), in terms of the quantity consumed, incurred by using the numerical
solution instead of the true equilibrium pricing rule.

To evaluate the precision of the endogenous grid algorithm in the context of Section 4.2.1,
we simulate a time series {(Xt, Rt)}T

t=1 of length T =20,000 based on the state evolution
path Xt+1 = e−δi(Xt, Rt) + Yt and Rt+1 ∼ Φ(Rt, ·), where (X0, R0) is given, and

i(Xt, Rt) = min{Xt, x∗f (Rt)} − p−1[ f (Xt, Rt)]

is the equilibrium storage function computed by the endogenous grid algorithm. We
discard the first 1,000 draws, and then compute the Euler equation error at the truncated
time series. When applying the endogenous grid algorithm, we use an exponential grid
for storage in the range [0, 2] with median value 0.5, function iteration is implemented
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via linear interpolation and linear extrapolation, and we terminate the iteration process at
precision ϖ = 10−4. The rest of the setting is same to Section 4.

TABLE E.1. Precision under different grid sizes and different parameters

A. Different grid sizes
K = 100 K = 200 K = 1,000

Precision N = 7 N = 51 N = 101 N = 7 N = 51 N = 101 N = 7 N = 51 N = 101

max −3.61 −3.64 −3.64 −3.96 −4.01 −4.02 −4.69 −5.21 −5.16
95% −4.69 −4.66 −4.67 −5.44 −5.39 −5.39 −6.72 −6.76 −6.77

B. Different parameters
λ = −0.03 λ = −0.06 λ = −0.15

Precision δ = 0.01 δ = 0.02 δ = 0.05 δ = 0.01 δ = 0.02 δ = 0.05 δ = 0.01 δ = 0.02 δ = 0.05

max −3.63 −3.65 −3.63 −3.64 −3.64 −3.59 −3.68 −3.68 −3.67
95% −5.09 −4.9 −4.65 −4.9 −4.66 −4.45 −4.63 −4.52 −4.66

Notes: In Panel A, we fix λ = −0.06 and δ = 0.02, simulate a time series of length T = 20,000, discard the
first 1,000 draws, and then compute the level of precision as log10 |EE f |. When applying the endogenous
grid algorithm, we use an exponential grid for storage in the range [0, 2] with median value 0.5, function
iteration is implemented via linear interpolation and linear extrapolation, and we terminate the iteration
process at precision ϖ = 10−4. The rest of the setting is same to Section 4.2.1. In Panel B, we fix the grid size
to K = 100 and N = 51, and vary the parameters.

Summary statistics (maximum as well as 95-th percentile) are reported in Table E.1,
where K is the number of grid points for storage, N is the number of state points for interest
rates, and precision at (x, z) is evaluated as log10 |EE f (x, z)|. The results demonstrate that
the endogenous grid algorithm attains a high level of precision, with an Euler equation
error uniformly less than 0.025%.

E.3. The Generalized Impulse Response Function. To properly capture the nonlinear
asymmetric dynamics of the competitive storage model and effectively study the dynamic
causal effect of interest rates on commodity prices, we refer to the generalized impulse
response function proposed by Koop et al. (1996), which defines IRFs as state-and-history-
dependent random variables and is applicable to both linear and nonlinear multivariate
models. We are interested in calculating the IRFs when (Xt−1, Zt−1) are held at different
percentiles of the stationary distribution.

Algorithm 2 clarifies the computation process of the generalized IRFs based on the
setting of Section 4. However, the algorithm can be easily extended to handle more general
settings as formulated in Section 2, where more advanced interest rate and production
setups are allowed. To proceed, we define

F(x, z, Y) := e−δ
(

min{x, x∗(z)} − p−1[ f ∗(x, z)]
)
+ Y.
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Algorithm 2 The generalized impulse response function

Step 1. Initialization step. Choose initial values for Xt−1 and Zt−1, and a finite horizon H and a
size of Monte Carlo samples N. Furthermore, set the initial samples as

X̃n
t−1 = Xn

t−1 ≡ Xt−1 and Zn
t−1 = Z̃n

t−1 ≡ Zt−1.

Step 2. Randomly sample (H + 1)× N values of production shocks
{

YS,n
t+h

}(H,N)

(h,n)=(0,1)
.

Step 3. (Baseline Economy) Sample (H + 1)× N values of the exogenous states and calculate the
net production {

Zn
t+h
}(H,N)

(h,n)=(0,1) where Zn
t+h ∼ Π(Zn

t+h−1, · ),{
Yn

t+h
}(H,N)

(h,n)=(0,1) where Yn
t+h = y

(
Zn

t+h, YS,n
t+h

)
.

Step 4. (Impulse Shock Economy) Compute the period-t exogenous states {Z̃n
t }N

n=1 after the shock.
Sample H × N values of the exogenous states and calculate the net production{

Z̃n
t+h
}(H,N)

(h,n)=(1,1) where Z̃n
t+h ∼ Π(Z̃n

t+h−1, · ),{
Ỹn

t+h
}(H,N)

(h,n)=(0,1) where Ỹn
t+h = y

(
Z̃n

t+h, YS,n
t+h

)
.

Step 5. For h = 0, . . . , H and n = 1, . . . , N, compute the sequence of availability

Xn
t+h = F(Xn

t+h−1, Zn
t+h−1, Yn

t+h) and X̃n
t+h = F(X̃n

t+h−1, Z̃n
t+h−1, Ỹn

t+h).

Step 6. For h = 0, . . . , H, compute the period-(t + h) impulse response

IRF(t + h) =
1
N

N

∑
n=1

f ∗(X̃n
t+h, Z̃n

t+h)−
1
N

N

∑
n=1

f ∗(Xn
t+h, Zn

t+h).

The stationary distribution of the state process is computed based on ergodicity. Once
f ∗, i∗, and x∗ are calculated, we simulate a time series of {(Xt, Zt)}T

t=1 according to

Xt+1 = e−δ
(

min{Xt, x∗(Zt)} − p−1[ f ∗(Xt, Zt)]
)
+ y

(
Zt+1, YS

t+1

)
and Zt+1 ∼ Π(Zt, ·)

for T = 200,000 periods, discard the first 50,000 samples, and use the remainder to approx-
imate the stationary distribution.

APPENDIX F. MIT SHOCK IN A CONSTANT INTEREST RATE MODEL

Consider the classical competitive storage model of Deaton and Laroque (1992). As in
their paper, we assume that gross interest rates are constant at rℓ > 1, and output is IID

and satisfies Yt = y(ηt). Denote this as economy 1.
Consider an alternative economy, in which an MIT shock increases interest rates from rℓ

to rh at the beginning of period t, and interest rates return to rℓ in all subsequent periods.
Denote this as economy 2.

Let f ∗j be the equilibrium pricing rule, i∗j be the equilibrium storage, x∗j be the equilibrium
free-disposal threshold, and Tj be the equilibrium price operator when interest rates are
constant at rj for j ∈ {ℓ, h}.
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Lemma F.1. Tℓ f ≥ Th f for all f ∈ C . Moreover, f ∗ℓ ≥ f ∗h and x∗ℓ ≥ x∗h.

Proof. Since interest rates are constant and the output process is IID, the equilibrium objects
are functions of only the endogenous state. Fix f ∈ C . Denote x∗f j as the free-disposal
threshold (related to candidate f ) when interest rates are constant at rj for j ∈ {ℓ, h}. Since
rℓ < rh, we have

e−δ

rℓ
E f

(
e−δ[x∗f ℓ − p−1(0)] + Ŷ

)
≥ e−δ

rh
E f

(
e−δ[x∗f ℓ − p−1(0)] + Ŷ

)
.

By the continuity and monotonicity of f and the definition of the free-disposal threshold,
we have x∗f ℓ ≥ x∗f h. In particular, since f is chosen arbitrarily and f ∗ ∈ C , we have x∗ℓ ≥ x∗h.

Next, we show that Tℓ f ≥ Th f . Since Th f (x) = 0 whenever x ≥ x∗f h by Lemma A.5 and
Tℓ f ≥ 0, it suffices to verify that Tℓ f (x) ≥ Th f (x) for all x < x∗f h. Suppose on the contrary
that ξ1 := Tℓ f (x) < Th f (x) =: ξ2 for some x < x∗f h. By the definition of the equilibrium
price operator, we have

ξ1 = min
{

max
{

e−δ

rℓ
E f

(
e−δ[x − p−1(ξ1)] + Ŷ

)
− k, p(x)

}
, p(b)

}
≥ min

{
max

{
e−δ

rℓ
E f

(
e−δ[x − p−1(ξ2)] + Ŷ

)
− k, p(x)

}
, p(b)

}
≥ min

{
max

{
e−δ

rh
E f

(
e−δ[x − p−1(ξ2)] + Ŷ

)
− k, p(x)

}
, p(b)

}
= ξ2,

which is a contradiction. Hence we have shown that Tℓ f ≥ Th f for all f ∈ C .
Suppose Tn−1

ℓ f ≥ Tn−1
h f . Since the equilibrium price operator is order-preserving by

Lemma A.2, we have Tn
ℓ f = Tℓ(Tn−1

ℓ f ) ≥ Tℓ(Tn−1
h f ) ≥ Tn

h f . By induction, we have
shown that Tn

ℓ f ≥ Tn
h f for all n. Because Tn

ℓ f → f ∗ℓ and Tn
h f → f ∗h by Theorem A.1, letting

n → ∞ gives f ∗ℓ ≥ f ∗h . □

The next result indicates that, in the classical competitive storage model, an MIT interest
rate shock only has a contemporaneous negative effect on commodity prices, which will
die out immediately starting from the next period. In each future period, commodity
prices are at least as large as their level when shocks are absent.

Proposition F.1 (MIT Shock). If X1
t−1 = X2

t−1 with probability one, then P1
t ≥ P2

t and P1
t+h ≤

P2
t+h with probability one for all h ≥ 1.

Proof. Since shocks are unexpected and both economies share the same interest rate rℓ in
period t − 1 and the same output Yt = y(ηt) in each period, we have

X1
t = e−δi∗ℓ (X1

t−1) + Yt = e−δi∗ℓ (X2
t−1) + Yt = X2

t

with probability one. Since in period t interest rate in economy 2 is higher, agents will
account for the temporarily different incentive, hence the price function in economy 2 is
f ∗hℓ = Th f ∗ℓ and the inventory function is

i∗hℓ(x) = min{x∗ℓ , x} − p−1[ f ∗hℓ(x)]
7



Based on Lemma F.1, we have

f ∗hℓ = Th f ∗ℓ ≤ Tℓ f ∗ℓ = f ∗ℓ
and thus

i∗hℓ(x) ≤ min{x∗ℓ , x} − p−1[ f ∗ℓ (x)] = i∗ℓ (x).
As we have shown that X1

t = X2
t with probability one, the above inequalities imply that

P1
t = f ∗ℓ (X1

t ) = f ∗ℓ (X2
t ) ≥ f ∗hℓ(X2

t ) = P2
t

and
X1

t+1 = e−δi∗ℓ (X1
t ) + Yt+1 ≥ e−δi∗hℓ(X2

t ) + Yt+1 = X2
t+1

with probability one. Since starting from period t + 1 interest rates return to rℓ, the
equilibrium objects become f ∗ℓ and i∗ℓ in both economies. By the monotonicity of f ∗ℓ and i∗ℓ ,
we have

P1
t+1 = f ∗ℓ (X1

t+1) ≤ f ∗ℓ (X2
t+1) = P2

t+1

and
X1

t+2 = e−δi∗ℓ (X1
t+1) + Yt+2 ≥ e−δi∗ℓ (X2

t+1) + Yt+2 = X2
t+2

with probability one. By induction, we can then show that P1
t+h ≤ P2

t+h with probability
one for all h ≥ 1. □

APPENDIX G. A NECESSITY RESULT FOR DISCOUNTING

In this section, we show that Assumption 2.1 is necessary in a range of standard settings:
no equilibrium solution exists if Assumption 2.1 fails. Throughout, we focus on the case
where

b = 0, X = (b, ∞) and Mt = m(Zt).
Let BS be the Borel subsets of S. Let K(S,X) be the set of all stochastic kernels Ψ(x, z, d x′)
from S to X such that

Q f (x, z) := ∑
z′

∫
f (x′, z′)Φ(z, z′)Ψ(x, z, d x′), (x, z) ∈ S

has a stationary distribution π on the set of Borel probability measures on S and is irre-
ducible and weakly compact as an operator on L1 := L1(S, BS, π).

Given Ψ ∈ K(S,X), we consider the functional equation

f (x, z) = max

{
e−δ ∑

z′
m(z′)

∫
f (x′, z′)Φ(z, z′)Ψ(x, z, d x′), p(x)

}
, (G.1)

where m is a positive function on Z and p is a decreasing map from X to itself with∫
p d π < ∞ and p(x) ↑ ∞ as x ↓ 0. Letting K be the positive linear operator on L1 defined

by

K f (x, z) := e−δ ∑
z′

m(z′)
∫

f (x′, z′)Φ(z, z′)Ψ(x, z, d x′), (x, z) ∈ S,

we can also write (G.1) as f = K f ∨ p. Same as above, let s(K) be the spectral radius of K
as a linear operator on L1.
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Lemma G.1. If Ψ ∈ K(S,X), then − ln s(K) = δ + κ(M).

Proof. An induction argument shows that

Kn
1(x, z) = e−δn

Ez

n

∏
t=1

Mt.

Letting (X0, Z0) be a draw from π, we obtain

∥Kn
1∥ = EKn

1(X0, Z0) = e−δn
E

[
EZ0

n

∏
t=1

Mt

]
= e−δn

E

n

∏
t=1

Mt.

Hence, by weak compactness of K (which implies compactness of K2 by Theorem 9.9 of
Schaefer, 1974) and Theorem B2 of Borovička and Stachurski (2020), we have

s(K) = lim
n→∞

∥Kn
1∥1/n = lim

n→∞

{
e−δn

E

n

∏
t=1

Mt

}1/n

= e−δ lim
n→∞

q1/n
n .

It follows that − ln s(K) = δ + κ(M), as was to be shown. □

The following result demonstrates the necessity of Assumption 2.1 in the above standard
setting.

Proposition G.1. If there exists an f ∈ L1 and Ψ ∈ K(S,X) such that (G.1) holds, then
δ + κ(M) ≥ 0. If, in addition,

E := {(x, z) ∈ S : K f (x, z) < p(x)}

obeys π(E) > 0, then δ + κ(M) > 0.

Proof. Let f and h have the stated properties. Regarding the first claim, we note that, since
Q is weakly compact and irreducible on L1, and since m is positive and bounded, the
operator K is likewise weakly compact and irreducible. By the Krein–Rutman theorem,
combined with irreducibility and weak compactness of K (see, in particular, Lemma 4.2.11
of Meyer-Nieberg, 2012), there exists an e ∈ L∞ := L∞(S, BS, π) such that e > 0 π-almost
everywhere and K∗e = s(K)e, where K∗ is the adjoint of K.

By (G.1) we have f = K f ∨ p, so f ≥ K f . Hence

⟨e, f ⟩ ≥ ⟨e, K f ⟩ = ⟨K∗e, f ⟩ = s(K) ⟨e, f ⟩ . (G.2)

Since f ≥ p > 0 and e is positive π-a.e., we have ⟨e, f ⟩ > 0. Hence s(K) ≤ 1. Applying
Lemma G.1 now yields δ + κ(M) ≥ 0.

Regarding the second claim, suppose that π(E) > 0, where E is as defined in Proposi-
tion G.1. It then follows from f = K f ∨ p that f > K f on a set of positive π-measure. But
then, since e is positive π-a.e., we have ⟨e, f ⟩ > ⟨e, K f ⟩ = s(K) ⟨e, f ⟩, where the equality is
from (G.2). As before we have ⟨e, f ⟩ > 0, so s(K) < 1. Using Lemma G.1 again we obtain
δ + κ(M) > 0. □
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Borovička, Jaroslav and John Stachurski, “Necessary and sufficient conditions for exis-
tence and uniqueness of recursive utilities,” The Journal of Finance, 2020, 75 (3), 1457–1493.

Carroll, Christopher D., “The method of endogenous gridpoints for solving dynamic
stochastic optimization problems,” Economics Letters, 2006, 91 (3), 312–320.

Deaton, Angus and Guy Laroque, “On the behavior of commodity prices,” The Review of
Economic Studies, 1992, 59 (1), 1–23.

Gouel, Christophe and Nicolas Legrand, “The role of storage in commodity markets:
Indirect inference based on grains data,” Working Paper 2022-04, CEPII 2022.

Judd, Kenneth L, “Projection methods for solving aggregate growth models,” Journal of
Economic Theory, 1992, 58 (2), 410–452.

Koop, Gary, M. Hashem Pesaran, and Simon M. Potter, “Impulse response analysis in
nonlinear multivariate models,” Journal of Econometrics, 1996, 74 (1), 119–147.

Meyer-Nieberg, Peter, Banach Lattices, Springer, 2012.
Schaefer, Helmut H, Banach Lattices and Positive Operators, Springer, 1974.
Schmitt-Grohé, Stephanie and Martín Uribe, “Finite-State Approximation of VAR Pro-

cesses: A Simulation Approach,” note 2014. Available from https://www.columbia.
edu/~mu2166/tpm/tpm.html.

Tauchen, George, “Finite state Markov-chain approximations to univariate and vector
autoregressions,” Economics Letters, 1986, 20 (2), 177–181.

10

https://www.columbia.edu/~mu2166/tpm/tpm.html
https://www.columbia.edu/~mu2166/tpm/tpm.html

	Appendix D. An Identification Equivalence Result
	Appendix E. Algorithms
	E.1. The Endogenous Grid Algorithm
	E.2. Solution Precision
	E.3. The Generalized Impulse Response Function

	Appendix F. MIT shock in a Constant Interest Rate Model
	Appendix G. A Necessity Result for Discounting
	References
	References


